Enhancement of thermal shock resistance in β-Si3N4 coating with in situ synthesized β-Si3N4 nanowires/nanobelts on porous Si3N4 ceramics

被引:12
作者
Wang, Chao [1 ]
Wang, Xu [1 ]
Wang, Binglei [1 ]
Xiao, Guozheng [1 ]
Qiao, Ruiqing [1 ]
Zhang, Fan [1 ]
Bai, Yu [1 ]
Li, Yizhuo [1 ]
Wu, Yusheng [1 ]
Wang, Zhanjie [1 ]
Wang, Hongjie [2 ]
机构
[1] Shenyang Univ Technol, Sch Mat Sci & Engn, Shenyang 110870, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
关键词
porous Si3N4 ceramics; Coating; beta-Si3N4; nanowires/nanobelts; Thermal shock resistance; MECHANICAL-PROPERTIES; FABRICATION; BEHAVIOR; MICROSTRUCTURE; TEMPERATURE; NANOWIRES; LOAD;
D O I
10.1016/j.ceramint.2021.05.267
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A dense beta-Si3N4 coating toughened by beta-Si3N4 nanowires/nanobelts was prepared by a combined technique involving chemical vapor deposition and reactive melt infiltration to protect porous Si3N4 ceramics in this work. A porous beta-Si3N4 nanowires/nanobelts layer was synthesized in situ on porous Si3N4 ceramics by chemical vapor deposition, and then Y-Si-Al-O-N silicate liquid was infiltrated into the porous layer by reactive melt infiltration to form a dense composite coating. The coating consisted of well-dispersion beta-Si3N4 nanowires/nanobelts, fine beta-Si3N4 particles and small amount of silicate glass. The testing results revealed that as-prepared coating displayed a relatively high fracture toughness, which was up to 7.9 +/- 0.05 MPa m(1/2), and it is of great significance to improve thermal shock resistance of the coating. After thermal cycling for 15 times at Delta T = 1200 degrees C, the coated porous Si3N4 ceramics still had a high residual strength ratio of 82.2%, and its water absorption increased only to 6.21% from 3.47%. The results will be a solid foundation for the application of the coating in long-period extreme high temperature environment.
引用
收藏
页码:25449 / 25457
页数:9
相关论文
共 50 条
  • [31] Diamond coating of coloured Si3N4 ceramics
    Belmonte, M
    DIAMOND AND RELATED MATERIALS, 2005, 14 (01) : 54 - 59
  • [32] Mechanical Properties of Porous Si3N4 Ceramics
    Kasiarova, Monika
    Vilcekova, Zuzana
    Bodisova, Katarina
    Domanicka, Magdalena
    Hnatko, Miroslav
    Dusza, Jan
    Sajgalik, Pavol
    Gromosova, Sylvia
    LOCAL MECHANICAL PROPERTIES IX, 2014, 586 : 166 - +
  • [33] Research of Thermal Shock Resistance of Si3N4 and SiC
    Zhang, Fang
    Huang, Zhiliang
    CHEMICAL ENGINEERING AND MATERIAL PROPERTIES II, 2012, 549 : 691 - 694
  • [34] Tribology of Si3N4 containing in-situ grown Si2N2O processed from oxidized α-Si3N4 powders
    Qadir, Awais
    Ben Zine, Haroune Rachid
    Pinke, Peter
    Dusza, Jan
    CERAMICS INTERNATIONAL, 2021, 47 (12) : 17417 - 17426
  • [35] Thermal Shock Behavior of Si3N4/BN Fibrous Monolithic Ceramics
    Chen, Qingqing
    Zhang, Yuan
    Zhou, Yu
    Li, Daxin
    Ying, Guobing
    MATERIALS, 2023, 16 (19)
  • [36] Thermal shock resistance of Si3N4 and Si3N4-SiC ceramics with rare-earth oxide sintering additives
    Kasiarova, Monika
    Tatarko, Peter
    Burik, Peter
    Dusza, Jan
    Sajgalik, Pavol
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2014, 34 (14) : 3301 - 3308
  • [37] Mechanical, dielectric properties and thermal shock resistance of porous Si2N2O/Si3N4 composite ceramics
    Wei Liting
    Yu Yinhu
    Jiao Jiao
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2018, 19 (02): : 126 - 129
  • [38] Fabrication of dense β-Si3N4-based ceramic coating on porous Si3N4 ceramic
    Wang, Chao
    Wang, Hongjie
    Fan, Xingyu
    Zhou, Jun
    Xia, Hongyan
    Fan, Jinpeng
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (06) : 1743 - 1750
  • [39] Nanofilaments of Si3N4
    Kargin, Yu. F.
    Ivicheva, S. N.
    Ovsyannikov, N. A.
    Lysenkov, A. S.
    Chernyavsky, A. S.
    Alad'ev, N. A.
    Kutsev, S. V.
    INORGANIC MATERIALS, 2009, 45 (05) : 511 - 516
  • [40] Characterization of the Si3N4/Si3N4 joints fabricated using particles modified braze
    He, Yanming
    Zhang, Jie
    Li, Xiaodong
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 616 : 107 - 115