Stable pairs and the HOMFLY polynomial

被引:24
作者
Maulik, Davesh [1 ]
机构
[1] Columbia Univ, Dept Math, MC 4406,2990 Broadway, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
HILBERT SCHEMES; HECKE ALGEBRAS; IDEMPOTENTS; POINTS; CURVE; SKEIN;
D O I
10.1007/s00222-015-0624-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a planar curve singularity, we prove a conjecture of Oblomkov-Shende, relating the geometry of its Hilbert scheme of points to the HOMFLY polynomial of the associated algebraic link. More generally, we prove an extension of this conjecture, due to Diaconescu-Hua-Soibelman, relating stable pair invariants on the conifold to the colored HOMFLY polynomial of the algebraic link. Our proof uses wall-crossing techniques to prove a blowup identity on the algebro-geometric side. We prove a matching identity for the colored HOMFLY polynomials of a link using skein-theoretic techniques.
引用
收藏
页码:787 / 831
页数:45
相关论文
共 40 条
[1]   The topological vertex [J].
Aganagic, M ;
Klemm, A ;
Mariño, M ;
Vafa, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 254 (02) :425-478
[2]  
AGANAGIC M, ARXIV11055117
[3]   Idempotents of Hecke algebras of type A. [J].
Aiston, AK ;
Morton, HR .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1998, 7 (04) :463-487
[4]  
[Anonymous], ARXIV12012115
[5]   Flops and derived categories [J].
Bridgeland, T .
INVENTIONES MATHEMATICAE, 2002, 147 (03) :613-632
[6]   Donaldson-Thomas invariants and flops [J].
Calabrese, John .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 716 :103-145
[7]  
Casas-Alvero E., 2000, SINGULARITIES OF PLA
[8]   Jones Polynomials of Torus Knots via DAHA [J].
Cherednik, Ivan .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (23) :5366-5425
[9]   Large N Duality, Lagrangian Cycles, and Algebraic Knots [J].
Diaconescu, D. -E. ;
Shende, V. ;
Vafa, C. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 319 (03) :813-863
[10]  
Diaconescu DE, 2012, COMMUN NUMBER THEORY, V6, P517