Non-smooth homoclinic bifurcation in a conceptual climate model

被引:10
作者
Leifeld, Julie [1 ]
机构
[1] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
关键词
34A36; 34B60; 34C23; 37G15; PIECEWISE-SMOOTH; SYSTEMS; DISCONTINUITY; DYNAMICS;
D O I
10.1017/S0956792518000153
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Collision of equilibria with a splitting manifold has been locally studied, but might also be a contributing factor to global bifurcations. In particular, a boundary collision can be coincident with collision of a virtual equilibrium with a periodic orbit, giving an analogue to a homoclinic bifurcation. This type of bifurcation is demonstrated in a non-smooth climate application. Here, we describe the non-smooth bifurcation structure, as well as the smooth bifurcation structure for which the non-smooth homoclinic bifurcation is a limiting case.
引用
收藏
页码:891 / 904
页数:14
相关论文
共 20 条
[1]   A singular approach to discontinuous vector fields on the plane [J].
Buzzi, Claudio A. ;
da Silva, Paulo R. ;
Teixeira, Marco A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 231 (02) :633-655
[2]   Bifurcations of piecewise smooth flows: Perspectives, methodologies and open problems [J].
Colombo, A. ;
di Bernardo, M. ;
Hogan, S. J. ;
Jeffrey, M. R. .
PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (22) :1845-1860
[3]   Bifurcation analysis of piecewise smooth ecological models [J].
Dercole, Fabio ;
Gragnani, Alessandra ;
Rinaldi, Sergio .
THEORETICAL POPULATION BIOLOGY, 2007, 72 (02) :197-213
[4]   Discontinuity-induced bifurcations of equilibria in piecewise-smooth and impacting dynamical systems [J].
di Bernardo, M. ;
Nordmark, A. ;
Olivar, G. .
PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (01) :119-136
[5]  
DiBernardo M, 2008, APPL MATH SCI, V163, P1, DOI 10.1007/978-1-84628-708-4
[6]   Nonlinear threshold behavior during the loss of Arctic sea ice [J].
Eisenman, I. ;
Wettlaufer, J. S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (01) :28-32
[7]  
Filippov A.F., 1988, DIFFERENTIAL EQUATIO, V18
[8]   Generic bifurcations of low codimension of planar Filippov Systems [J].
Guardia, M. ;
Seara, T. M. ;
Teixeira, M. A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (04) :1967-2023
[9]   Analysis of an Arctic Sea Ice Loss Model in the Limit of a Discontinuous Albedo [J].
Hill, Kaitlin ;
Abbot, Dorian S. ;
Silber, Mary .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (02) :1163-1192
[10]   Hidden dynamics in models of discontinuity and switching [J].
Jeffrey, Mike R. .
PHYSICA D-NONLINEAR PHENOMENA, 2014, 273 :34-45