SHARP BOUNDS FOR THE GENERAL RANDIC INDEX OF TREES WITH GIVEN DEGREE SEQUENCES

被引:0
作者
Su, Guifu [1 ]
Rao, Gang [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Math & Phys, Beijing 100029, Peoples R China
来源
ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS | 2020年 / 23卷 / 01期
关键词
degree sequence; the general Rancho index; extremal graphs; tree; 2ND ZAGREB INDEXES; UNICYCLIC GRAPHS;
D O I
10.17654/DM023010025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The general Rancho index R-alpha(G) of a graph G is equal to the sum of the weights [d(u)d(v)](alpha) of all edges try in it, where d(u) denotes the degree of a vertex u in G and alpha is an arbitrary real number. In this paper, we completely characterize the unique extremal tree with the maximum general Rancho index in the class of all trees with a given degree sequence.
引用
收藏
页码:25 / 38
页数:14
相关论文
共 20 条
[1]  
Bollobás B, 1998, ARS COMBINATORIA, V50, P225
[2]  
Bondy JA, 1976, Graph Theory
[3]   Graphs with maximum connectivity index [J].
Caporossi, G ;
Gutman, I ;
Hansen, P ;
Pavlovic, L .
COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2003, 27 (01) :85-90
[4]  
Diudea M. V., 2001, MOL TOPOLOGY
[5]   GRAPH THEORY AND MOLECULAR-ORBITALS - TOTAL PI-ELECTRON ENERGY OF ALTERNANT HYDROCARBONS [J].
GUTMAN, I ;
TRINAJSTIC, N .
CHEMICAL PHYSICS LETTERS, 1972, 17 (04) :535-538
[6]  
Hu YH, 2007, THESIS
[7]   The first and second Zagreb indices of some graph operations [J].
Khalifeh, M. H. ;
Yousefi-Azari, H. ;
Ashrafi, A. R. .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (04) :804-811
[8]  
Kier L., 1986, MOL CONNECTIVITY STR
[9]  
Li XL, 2006, MATCH-COMMUN MATH CO, V55, P391
[10]   Trees with a given order and matching number that have maximum general Randic index [J].
Li, Xueliang ;
Liu, Jianxi ;
Zhong, Lingping .
DISCRETE MATHEMATICS, 2010, 310 (17-18) :2249-2257