Study of La0.6Sr0.4Co1-xFexO3-δ (x=0.2 & 0.8) Electrochemical Response as SOFC Cathodes and Its Relation with Microstructure

被引:12
作者
Ascolani-Yael, J. [1 ]
Montenegro-Hernandez, A. [1 ]
Liu, Q. [2 ]
Barnett, S. A. [2 ]
Mogni, L. [1 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, CNEA, INN, Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[2] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
OXIDE FUEL-CELLS; ELECTRICAL-CONDUCTIVITY RELAXATION; IONIC-ELECTRONIC CONDUCTORS; HIGH-TEMPERATURE PROPERTIES; OXYGEN-TRANSPORT KINETICS; NANOSTRUCTURED CATHODES; POLARIZATION PHENOMENA; PERFORMANCE; IMPEDANCE; MECHANISMS;
D O I
10.1149/2.0281916jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This work presents the study of the O-2-Reduction Reaction (ORR) by electrochemical impedance spectroscopy of La0.6Sr0.4Co0.8Fe0.2O3-delta and La0.6Sr0.4Co0.2Fe0.8O3-delta cathodes as a function of temperature and pO(2). The combination of the impedance data, modeled with a Transmission Line Model, with the microstructural data obtained by FIB-SEM tomography, allowed to obtain and compare the chemical diffusion coefficients (Dchem), O-2 equilibrium molar exchange rates (R-0) and the oxygen surface exchange rates (k(chem)) for both compounds. The obtained values were, at 700 degrees C in air, Dchem = 5.4.10-7 cm2.s-1 and k(chem) = 1.4.10(-6) cm.s(-1) for La0.6Sr0.4Co0.2Fe0.8O3-delta, while Dchem = 2.6.10-6 cm(2).s(-1) and k(chem) = 3.1.10(-)6 cm.s(-1) were obtained for La0.6Sr0.4Co0.8Fe0.2O3-delta. The detailed analysis of these parameters as a function of pO(2) (10(-4) < pO(2) = 1) and temperature (500 degrees C = T = 700 degrees C) by means of the Adler-Lane-Steele model, adapted to a finite length porous electrode, allowed identifying the O-ion diffusion and surface exchange as processes co-limiting the ORR. From this analysis, a predominantly surface limited ORR was found for La0.6Sr0.4Co0.2Fe0.8O3-delta, changing to a more bulk limited ORR for La0.6Sr0.4Co0.8Fe0.2O3-delta d which has higher oxygen-vacancy concentration. (C) 2019 The Electrochemical Society.
引用
收藏
页码:F1301 / F1307
页数:7
相关论文
共 54 条
[1]   Mechanisms and rate laws for oxygen exchange on mixed-conducting oxide surfaces [J].
Adler, S. B. ;
Chen, X. Y. ;
Wilson, J. R. .
JOURNAL OF CATALYSIS, 2007, 245 (01) :91-109
[2]   Mechanism and kinetics of oxygen reduction on porous La1-xSrxCoO3-δ electrodes [J].
Adler, SB .
SOLID STATE IONICS, 1998, 111 (1-2) :125-134
[3]   Electrode kinetics of porous mixed-conducting oxygen electrodes [J].
Adler, SB ;
Lane, JA ;
Steele, BCH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (11) :3554-3564
[4]   Factors governing oxygen reduction in solid oxide fuel cell cathodes [J].
Adler, SB .
CHEMICAL REVIEWS, 2004, 104 (10) :4791-4843
[5]   Oxygen Transport Kinetics of Mixed Ionic-Electronic Conductors by Coupling Focused Ion Beam Tomography and Electrochemical Impedance Spectroscopy [J].
Almar, Laura ;
Szasz, Julian ;
Weber, Andre ;
Ivers-Tiffee, Ellen .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (04) :F289-F297
[6]  
[Anonymous], 2004, FUEL CELL, V7, P1, DOI [10.1002/zaac.200300050, DOI 10.1002/ZAAC.200300050]
[7]   Structure-property relationship in layered perovskite cathode LnBa0.5Sr0.5Co2O5+δ (Ln = Pr, Nd) for solid oxide fuel cells [J].
Azad, Abul K. ;
Kim, Jung H. ;
Irvine, John T. S. .
JOURNAL OF POWER SOURCES, 2011, 196 (17) :7333-7337
[8]   High performance nanostructured IT-SOFC cathodes prepared by novel chemical method [J].
Baque, Laura ;
Caneiro, Alberto ;
Moreno, Mario S. ;
Serquis, Adriana .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (12) :1905-1908
[9]   Degradation of oxygen reduction reaction kinetics in porous La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes due to aging-induced changes in surface chemistry [J].
Baque, Laura C. ;
Soldati, Analia L. ;
Teixeira-Neto, Erico ;
Troiani, Horacio E. ;
Schreiber, Anja ;
Serquis, Adriana C. .
JOURNAL OF POWER SOURCES, 2017, 337 :166-172
[10]   Oxygen transport in La0.6Sr0.4Co1-yFeyO3-δ [J].
Bouwmeester, HJM ;
Den Otter, MW ;
Boukamp, BA .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2004, 8 (09) :599-605