Natural extensions for p-adic β-shifts and other scaling maps

被引:3
作者
Furno, Joanna [1 ]
机构
[1] De Paul Univ, Dept Math Sci, 2320 N Kenmore Ave, Chicago, IL 60614 USA
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2019年 / 30卷 / 06期
关键词
beta-shift; Locally scaling; p-adic; Natural extension; Isometry; INVARIANT DENSITIES; TRANSFORMATIONS;
D O I
10.1016/j.indag.2019.08.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The p-adic beta-shift can naturally be thought of as an isometry on the p-adic integers (multiplication by a unit), followed by an iterate of the one-sided shift. We show that all (p(-n), p(n))-locally scaling maps have such a decomposition into an iterate of the one-sided shift composed with an isometry. We then use this decomposition to give a formula for the natural extension. (C) 2019 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1099 / 1108
页数:10
相关论文
共 16 条
[1]  
BERTRAND A, 1977, CR ACAD SCI A MATH, V285, P419
[2]   Matching for generalised β-transformations [J].
Bruin, Henk ;
Carminati, Carlo ;
Kalle, Charlene .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2017, 28 (01) :55-73
[3]  
D'Ambros P., 2000, Colloq. Math, V84/85, P95
[4]   The natural extension of the β-transformation [J].
Dajani, K ;
Kraaikamp, C ;
Solomyak, B .
ACTA MATHEMATICA HUNGARICA, 1996, 73 (1-2) :97-109
[5]  
Dajani K., 2002, CAMS MATH MONOGRAPHS, V29
[6]   A point is normal for almost all maps βx plus α mod 1 or generalized β-transformations [J].
Faller, B. ;
Pfister, C. -E. .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 :1529-1547
[7]  
Furno J, 2014, NEW YORK J MATH, V20, P799
[8]   Invariant densities for generalized β-maps [J].
Gora, Pawel .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 :1583-1598
[9]   Invariant densities for piecewise linear maps of the unit interval [J].
Gora, Pawel .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 :1549-1583
[10]  
Hsia LC, 1996, COMPOS MATH, V100, P277