Asymptotic behavior of solutions to fractional diffusion-convection equations

被引:12
作者
Ignat, Liviu I. [1 ]
Stan, Diana [2 ]
机构
[1] Romanian Acad, Inst Math Simion Stoilow, Ctr Francophone Math, Bucharest, Romania
[2] Basque Ctr Appl Math, Alameda Mazarredo 14, Bilbao 48009, Spain
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2018年 / 97卷
关键词
LARGE TIME BEHAVIOR; NONLOCAL REGULARIZATION;
D O I
10.1112/jlms.12110
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a convection-diffusion model with linear fractional diffusion in the sub-critical range. We prove that the large time asymptotic behavior of the solution is given by the unique entropy solution of the convective part of the equation. The proof is based on suitable apriori estimates, among which proving an Oleinik type inequality plays a key role.
引用
收藏
页码:258 / 281
页数:24
相关论文
共 50 条
[31]   Asymptotic stability of stationary solutions for Hall magnetohydrodynamic equations [J].
Tan, Zhong ;
Tong, Leilei .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (03)
[32]   Asymptotic behavior of solutions to an electromagnetic fluid model [J].
Xin Xu .
Zeitschrift für angewandte Mathematik und Physik, 2018, 69
[33]   Asymptotic behavior of solutions to an electromagnetic fluid model [J].
Xu, Xin .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (02)
[34]   Asymptotic profile of solutions for the damped wave equation with a nonlinear convection term [J].
Kato, Masakazu ;
Ueda, Yoshihiro .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) :7760-7779
[35]   Asymptotic behavior for the fast diffusion equation with absorption and singularity [J].
Xie, Changping ;
Fang, Shaomei ;
Mei, Ming ;
Qin, Yuming .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 414 :722-745
[36]   Asymptotic behavior for a singular diffusion equation with gradient absorption [J].
Iagar, Razvan Gabriel ;
Laurencot, Philippe .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (08) :2739-2777
[37]   ASYMPTOTIC BEHAVIOR OF THE NONLOCAL DIFFUSION EQUATION WITH LOCALIZED SOURCE [J].
Yang, Jinge ;
Zhou, Shuangshuang ;
Zheng, Sining .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (10) :3521-3532
[38]   Asymptotic behavior of strong solutions to the 3D Navier-Stokes equations with a nonlinear damping term [J].
Jiang, Zaihong .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (13) :5002-5009
[39]   ASYMPTOTIC BEHAVIOR OF SPHERICALLY OR CYLINDRICALLY SYMMETRIC SOLUTIONS TO THE COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH LARGE INITIAL DATA [J].
Zhao, Xinhua ;
Li, Zilai .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (03) :1421-1448
[40]   DECAY OF SOLUTIONS TO A POROUS MEDIA EQUATION WITH FRACTIONAL DIFFUSION [J].
Niche, Cesar J. ;
Orive-Illera, Rafael .
ADVANCES IN DIFFERENTIAL EQUATIONS, 2014, 19 (1-2) :133-160