共 50 条
Error analysis of finite element method for Poisson-Nernst-Planck equations
被引:48
|作者:
Sun, Yuzhou
[1
]
Sun, Pengtao
[1
]
Zheng, Bin
[2
]
Lin, Guang
[3
]
机构:
[1] Univ Nevada, Dept Math Sci, 4505 Maryland Pkwy, Las Vegas, NV 89154 USA
[2] Pacific NW Natl Lab, Adv Comp Math & Data Div, 902 Battelle Blvd, Richland, WA 99354 USA
[3] Purdue Univ, Dept Math, 610 Purdue Mall, W Lafayette, IN 47907 USA
基金:
美国国家科学基金会;
关键词:
Poisson-Nernst-Planck equations;
Finite element method;
A priori error estimates;
Semi-discretization;
Full discretization;
Crank-Nicolson scheme;
ASYMPTOTIC ANALYSIS;
ION CHANNELS;
PERMEATION;
GRAMICIDIN;
TRANSPORT;
D O I:
10.1016/j.cam.2016.01.028
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper we study the a priori error estimates of finite element method for the system of time-dependent Poisson-Nernst-Planck equations, and for the first time, we obtain its optimal error estimates in L-infinity (H-1) and L-2(H-1) norms, and suboptimal error estimates in L-infinity (L-2) norm, with linear element, and optimal error estimates in L-infinity (L-2) norm with quadratic or higher-order element, for both semi- and fully discrete finite element approximations. Numerical experiments are also given to validate the theoretical results. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:28 / 43
页数:16
相关论文