energy harvesting;
piezoelectric transducers;
vibration enhancement mechanism (VEM);
design of experiments-based optimization;
internet of things (IoT);
DESIGN;
PERFORMANCE;
CANTILEVER;
EFFICIENCY;
D O I:
10.3390/en14092498
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
In the 21st century, researchers have been showing keen interest in the areas of wireless networking and internet of things (IoT) devices. Conventionally, batteries have been used to power these networks; however, due to the limited lifespan of batteries and with the recent advancements in piezoelectric technology, there is a dramatic increase in renewable energy harvesting devices. In this research, an eco-friendly wind energy harvesting device based on the piezoelectric technique is analytically modeled, numerically simulated, and statistically optimized for low power applications. MATLAB toolbox SIMSCAPE is utilized to simulate the proposed wind energy harvester in which a windmill is used to produce rotational motion due to the kinetic energy of wind. The windmill's rotational shaft is further connected to the rotary to linear converter (RLC) and vibration enhancement mechanism (VEM) for the generation of translational mechanical vibration. Consequently, due to these alternative linear vibrations, the piezoelectric stack produces sufficient electrical output. The output response of the energy harvester is analyzed for the various conditions of piezoelectric thickness, wind speed, rotor angular velocity, and VEM stiffness. It is observed that the electrical power of the proposed harvester is proportional to the cube of wind speed and is inversely proportional to the number of rotor blades. Furthermore, an optimization strategy based on the full factorial design of the experiment is developed and implemented on MINITAB 18.0 for evaluating the statistical performance of the proposed harvester. It is noticed that a design with 3 rotor-blades, having 3 mm piezoelectric thickness, and 40 Nm(-1) stiffness generates the optimum electrical response of the harvester.
机构:
Korea Aerosp Univ, Sch Aerosp & Mech Engn, Goyang City 421791, Geonggi Do, South KoreaKorea Aerosp Univ, Sch Aerosp & Mech Engn, Goyang City 421791, Geonggi Do, South Korea
Bae, Jae-Sung
Inman, Daniel J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USAKorea Aerosp Univ, Sch Aerosp & Mech Engn, Goyang City 421791, Geonggi Do, South Korea
机构:
Korea Aerosp Univ, Sch Aerosp & Mech Engn, Goyang City 421791, Geonggi Do, South KoreaKorea Aerosp Univ, Sch Aerosp & Mech Engn, Goyang City 421791, Geonggi Do, South Korea
Bae, Jae-Sung
Inman, Daniel J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USAKorea Aerosp Univ, Sch Aerosp & Mech Engn, Goyang City 421791, Geonggi Do, South Korea