Band Selection and Decision Fusion for Target Detection in Hyperspectral Imagery

被引:0
|
作者
ul Haq, Ihsan [1 ]
Xu, Xiaojian [1 ]
机构
[1] Beihang Univ, Sch Elect Informat Engn, Beijing 100191, Peoples R China
来源
ICIEA: 2009 4TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-6 | 2009年
关键词
Hyperspectral imagery; data dimensionality reduction; remote sensing; band selection method;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A band clustering and selection approach based on standard deviation (STD) and orthogonal projection divergence (OPD) is introduced in this paper. STD of Hyperspectral image data is calculated. Hyperspectral image data is analyzed for multiple target detection. Spectral signatures of required target are used to measure OPD. Optimal number of bands preserving maximum information is calculated by using a new developed technique, virtual dimensionality (VD). For endmember extraction, vertex component analysis (VCA) is used. A new approach for decision fusion is also introduced by using spectral discriminatory entropy (SDE) and spectral angle mapper (SAM). A comparative study is conducted to show the effectiveness of new approaches of band clustering and selection and decision fusion.
引用
收藏
页码:1459 / 1462
页数:4
相关论文
共 50 条
  • [1] BAND CLUSTERING AND SELECTION AND DECISION FUSION FOR TARGET DETECTION IN HYPERSPECTRAL IMAGERY
    ul Haq, Ihsan
    Xu, Xiaojian
    Shahzad, Aamir
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1101 - 1104
  • [2] Sparse Representation Based Band Selection for Hyperspectral Imagery Target Detection
    Tang Y.-D.
    Huang S.-C.
    Xue A.-J.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2017, 45 (10): : 2368 - 2374
  • [3] A Decision Fusion Framework for Hyperspectral Subpixel Target Detection
    Gholizadeh, Hamm
    Zoej, Mohammad Javad Valadan
    Mojaradi, Barat
    PHOTOGRAMMETRIE FERNERKUNDUNG GEOINFORMATION, 2012, (03): : 267 - 280
  • [4] FAST BAND SELECTION FOR HYPERSPECTRAL IMAGERY
    Yang, He
    Du, Qian
    2011 IEEE 17TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2011, : 1048 - 1051
  • [5] Kernel and Stochastic Expectation Maximization Fusion for Target Detection in Hyperspectral Imagery
    Elbakary, M. I.
    Alam, M. S.
    OPTICAL PATTERN RECOGNITION XXII, 2011, 8055
  • [6] A decision-level fusion scheme using the support vector data description for target detection in hyperspectral imagery
    Sakla, Wesam A.
    Sakla, Adel A.
    Chan, Andrew
    Ji, Jim
    AUTOMATIC TARGET RECOGNITION XX; ACQUISITION, TRACKING, POINTING, AND LASER SYSTEMS TECHNOLOGIES XXIV; AND OPTICAL PATTERN RECOGNITION XXI, 2010, 7696
  • [7] A subspace band selection method for hyperspectral imagery
    Zhao L.
    Wang L.
    Liu D.
    Yaogan Xuebao/Journal of Remote Sensing, 2019, 23 (05): : 904 - 910
  • [8] Neural Network-based Band Selection on Hyperspectral Imagery
    Darling, Preston C.
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS III, 2021, 11746
  • [9] Algorithms of target detection on hyperspectral imagery
    Yan, Yahui
    Liu, Bingqi
    OPTIK, 2013, 124 (23): : 6341 - 6344
  • [10] Decision Fusion on Supervised and Unsupervised Classifiers for Hyperspectral Imagery
    Yang, He
    Du, Qian
    Ma, Ben
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2010, 7 (04) : 875 - 879