The Bethe ansatz for 1D interacting anyons

被引:46
作者
Batchelor, M. T. [1 ]
Guan, X-W
He, J-S
机构
[1] Australian Natl Univ, Dept Theoret Phys, Res Sch Phys Sci & Engn, Canberra, ACT 0200, Australia
[2] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
[3] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
关键词
quantum integrability (Bethe ansatz); thermodynamic Bethe ansatz;
D O I
10.1088/1742-5468/2007/03/P03007
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper gives a pedagogic derivation of the Bethe ansatz solution for 1D interacting anyons. This includes a demonstration of the subtle role of the anyonic phases in the Bethe ansatz arising from the anyonic commutation relations. The thermodynamic Bethe ansatz equations defining the temperature dependent properties of the model are also derived, from which some ground state properties are obtained.
引用
收藏
页数:20
相关论文
共 48 条
[41]  
Takahashi M., 1999, Thermodynamics of One-Dimensional Solvable Models
[42]  
TSVELICK AM, 1983, ADV PHYS, V32, P1
[43]  
WIEGMANN P, 1982, JETP LETT, V35, P77
[44]   QUANTUM-MECHANICS OF FRACTIONAL-SPIN PARTICLES [J].
WILCZEK, F .
PHYSICAL REVIEW LETTERS, 1982, 49 (14) :957-959
[45]   STATISTICAL DISTRIBUTION FOR GENERALIZED IDEAL-GAS OF FRACTIONAL-STATISTICS PARTICLES [J].
WU, YS .
PHYSICAL REVIEW LETTERS, 1994, 73 (07) :922-925
[47]   THERMODYNAMICS OF A ONE-DIMENSIONAL SYSTEM OF BOSONS WITH REPULSIVE DELTA-FUNCTION INTERACTION [J].
YANG, CN ;
YANG, CP .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (07) :1115-+
[48]   Topological effects associated with fractional statistics in one-dimensional mesoscopic sings [J].
Zhu, JX ;
Wang, ZD .
PHYSICAL REVIEW A, 1996, 53 (01) :600-603