The Bethe ansatz for 1D interacting anyons

被引:46
作者
Batchelor, M. T. [1 ]
Guan, X-W
He, J-S
机构
[1] Australian Natl Univ, Dept Theoret Phys, Res Sch Phys Sci & Engn, Canberra, ACT 0200, Australia
[2] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
[3] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
关键词
quantum integrability (Bethe ansatz); thermodynamic Bethe ansatz;
D O I
10.1088/1742-5468/2007/03/P03007
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper gives a pedagogic derivation of the Bethe ansatz solution for 1D interacting anyons. This includes a demonstration of the subtle role of the anyonic phases in the Bethe ansatz arising from the anyonic commutation relations. The thermodynamic Bethe ansatz equations defining the temperature dependent properties of the model are also derived, from which some ground state properties are obtained.
引用
收藏
页数:20
相关论文
共 48 条
[31]   EXACT ANALYSIS OF AN INTERACTING BOSE GAS .1. GENERAL SOLUTION AND GROUND STATE [J].
LIEB, EH ;
LINIGER, W .
PHYSICAL REVIEW, 1963, 130 (04) :1605-+
[32]   EXACT ANALYSIS OF AN INTERACTING BOSE GAS .2. EXCITATION SPECTRUM [J].
LIEB, EH .
PHYSICAL REVIEW, 1963, 130 (04) :1616-+
[33]   Algebraic Bethe ansatz method for the exact calculation of energy spectra and form factors: applications to models of Bose-Einstein condensates and metallic nanograins [J].
Links, J ;
Zhou, HQ ;
McKenzie, RH ;
Gould, MD .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (19) :R63-R104
[34]  
MA ZQ, 1993, YANG BAXTER EQUATION
[35]  
MATTIS DC, 1993, MANY BODY PROBLEM
[36]   STUDY OF EXACTLY SOLUBLE ONE-DIMENSIONAL N-BODY PROBLEMS [J].
MCGUIRE, JB .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (05) :622-&
[37]   EXCLUSION STATISTICS - LOW-TEMPERATURE PROPERTIES, FLUCTUATIONS, DUALITY, AND APPLICATIONS [J].
NAYAK, C ;
WILCZEK, F .
PHYSICAL REVIEW LETTERS, 1994, 73 (20) :2740-2743
[38]   Fermionic long-range correlations realized by particles obeying deformed statistics [J].
Osterloh, A ;
Amico, L ;
Eckern, U .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (48) :L487-L492
[39]  
SANTACHIARA R, 2006, CONDMAT0610402
[40]  
Sutherland B., 2004, BEAUTIFUL MODELS, DOI DOI 10.1142/5552