The Bethe ansatz for 1D interacting anyons

被引:46
作者
Batchelor, M. T. [1 ]
Guan, X-W
He, J-S
机构
[1] Australian Natl Univ, Dept Theoret Phys, Res Sch Phys Sci & Engn, Canberra, ACT 0200, Australia
[2] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
[3] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2007年
关键词
quantum integrability (Bethe ansatz); thermodynamic Bethe ansatz;
D O I
10.1088/1742-5468/2007/03/P03007
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper gives a pedagogic derivation of the Bethe ansatz solution for 1D interacting anyons. This includes a demonstration of the subtle role of the anyonic phases in the Bethe ansatz arising from the anyonic commutation relations. The thermodynamic Bethe ansatz equations defining the temperature dependent properties of the model are also derived, from which some ground state properties are obtained.
引用
收藏
页数:20
相关论文
共 48 条
  • [1] One-dimensional XXZ model for particles obeying fractional statistics
    Amico, L
    Osterloh, A
    Eckern, U
    [J]. PHYSICAL REVIEW B, 1998, 58 (04) : R1703 - R1706
  • [2] SOLUTION OF THE KONDO PROBLEM
    ANDREI, N
    FURUYA, K
    LOWENSTEIN, JH
    [J]. REVIEWS OF MODERN PHYSICS, 1983, 55 (02) : 331 - 402
  • [3] [Anonymous], P INT C MATH BERKELE
  • [4] Generalized exclusion statistics and degenerate signature of strongly interacting anyons
    Batchelor, M. T.
    Guan, X. -W.
    [J]. PHYSICAL REVIEW B, 2006, 74 (19)
  • [5] One-dimensional interacting anyon gas: Low-energy properties and haldane exclusion statistics
    Batchelor, M. T.
    Guan, X. -W.
    Oelkers, N.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (21)
  • [6] Fermionization and fractional statistics in the strongly interacting one-dimensional Bose gas
    Batchelor, M. T.
    Guan, X. W.
    [J]. LASER PHYSICS LETTERS, 2007, 4 (01) : 77 - 83
  • [7] The Bethe ansatz after 75 years
    Batchelor, Murray T.
    [J]. PHYSICS TODAY, 2007, 60 (01) : 36 - 40
  • [8] Baxter R J., 1982, EXACTLY SOLVED MODEL
  • [9] BERNARD D, 1994, CONDMAT9404025
  • [10] Metal theory
    Bethe, H.
    [J]. ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4): : 205 - 226