Families of fundamental and multipole solitons in a cubic-quintic nonlinear lattice in fractional dimension

被引:56
作者
Zeng, Liangwei [1 ,2 ]
Mihalache, Dumitru [3 ]
Malomed, Boris A. [4 ,5 ,6 ]
Lu, Xiaowei [1 ,2 ]
Cai, Yi [1 ,2 ]
Zhu, Qifan [1 ,2 ]
Li, Jingzhen [1 ,2 ]
机构
[1] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen Key Lab Micronano Photon Informat Techno, Shenzhen 518060, Peoples R China
[3] Horia Hulubei Natl Inst Phys & Nucl Engn, RO-077125 Bucharest, Romania
[4] Tel Aviv Univ, Dept Phys Elect, Sch Elect Engn, Fac Engn, POB 39040, Tel Aviv, Israel
[5] Tel Aviv Univ, Ctr Light Matter Interact, POB 39040, Tel Aviv, Israel
[6] Univ Tarapaca, Inst Alta Invest, Casilla 7D, Arica, Chile
基金
中国国家自然科学基金; 以色列科学基金会;
关键词
Multipole solitons; Cubic-quintic nonlinear lattice; Fractional Schrodinger equation;
D O I
10.1016/j.chaos.2020.110589
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct families of fundamental, dipole, and tripole solitons in the fractional Schrodinger equation (FSE) incorporating self-focusing cubic and defocusing quintic terms modulated by factors cos(2) x and sin(2) x, respectively. While the fundamental solitons are similar to those in the model with the uniform nonlinearity, the multipole complexes exist only in the presence of the nonlinear lattice. The shapes and stability of all the solitons strongly depend on the Levy index (LI) that determines the FSE fractionality. Stability areas are identified in the plane of LI and propagation constant by means of numerical methods, and some results are explained with the help of an analytical approximation. The stability areas are broadest for the fundamental solitons and narrowest for the tripoles. (C) 2020 Published by Elsevier Ltd.
引用
收藏
页数:7
相关论文
共 79 条
[1]   Solitons in PT-symmetric nonlinear lattices [J].
Abdullaev, Fatkhulla Kh. ;
Kartashov, Yaroslav V. ;
Konotop, Vladimir V. ;
Zezyulin, Dmitry A. .
PHYSICAL REVIEW A, 2011, 83 (04)
[2]   Multidimensional solitons in a low-dimensional periodic potential [J].
Baizakov, BB ;
Malomed, BA ;
Salerno, M .
PHYSICAL REVIEW A, 2004, 70 (05) :053613-1
[3]   Multidimensional solitons in periodic potentials [J].
Baizakov, BB ;
Malomed, BA ;
Salerno, M .
EUROPHYSICS LETTERS, 2003, 63 (05) :642-648
[4]   Control of a magnetic Feshbach resonance with laser light [J].
Bauer, Dominik M. ;
Lettner, Matthias ;
Vo, Christoph ;
Rempe, Gerhard ;
Duerr, Stephan .
NATURE PHYSICS, 2009, 5 (05) :339-342
[5]   Soliton stability versus collapse [J].
Bergé, L .
PHYSICAL REVIEW E, 2000, 62 (03) :R3071-R3074
[6]   Wave collapse in physics: principles and applications to light and plasma waves [J].
Berge, L .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 303 (5-6) :259-370
[7]   Bright solitons from defocusing nonlinearities [J].
Borovkova, Olga V. ;
Kartashov, Yaroslav V. ;
Torner, Lluis ;
Malomed, Boris A. .
PHYSICAL REVIEW E, 2011, 84 (03)
[8]   Algebraic bright and vortex solitons in defocusing media [J].
Borovkova, Olga V. ;
Kartashov, Yaroslav V. ;
Malomed, Boris A. ;
Torner, Lluis .
OPTICS LETTERS, 2011, 36 (16) :3088-3090
[9]   Theory of nonlinear matter waves in optical lattices [J].
Brazhnyi, VA ;
Konotop, VV .
MODERN PHYSICS LETTERS B, 2004, 18 (14) :627-651
[10]   Spontaneous symmetry breaking in purely nonlinear fractional systems [J].
Chen, Junbo ;
Zeng, Jianhua .
CHAOS, 2020, 30 (06)