A Constant Size Extension Drives Bacterial Cell Size Homeostasis

被引:295
|
作者
Campos, Manuel [1 ,2 ]
Surovtsev, Ivan V. [1 ,2 ]
Kato, Setsu [3 ]
Paintdakhi, Ahmad [1 ,2 ]
Beltran, Bruno [1 ,2 ,3 ]
Ebmeier, Sarah E. [1 ,3 ]
Jacobs-Wagner, Christine [1 ,2 ,3 ,4 ]
机构
[1] Yale Univ, Microbial Sci Inst, West Haven, CT 06516 USA
[2] Yale Univ, Sch Med, Howard Hughes Med Inst, New Haven, CT 06520 USA
[3] Yale Univ, Sch Med, Dept Mol Cellular & Dev Biol, New Haven, CT 06520 USA
[4] Yale Univ, Sch Med, Dept Microbial Pathogenesis, New Haven, CT 06520 USA
关键词
ESCHERICHIA-COLI K-12; CAULOBACTER-CRESCENTUS; DNA-REPLICATION; SACCHAROMYCES-CEREVISIAE; CHROMOSOME-REPLICATION; DIVISION CYCLE; GROWTH; YEAST; DYNAMICS; VARIABILITY;
D O I
10.1016/j.cell.2014.11.022
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cell size control is an intrinsic feature of the cell cycle. In bacteria, cell growth and division are thought to be coupled through a cell size threshold. Here, we provide direct experimental evidence disproving the critical size paradigm. Instead, we show through single-cell microscopy and modeling that the evolutionarily distant bacteria Escherichia coli and Caulobacter crescentus achieve cell size homeostasis by growing, on average, the same amount between divisions, irrespective of cell length at birth. This simple mechanism provides a remarkably robust cell size control without the need of being precise, abating size deviations exponentially within a few generations. This size homeostasis mechanism is broadly applicable for symmetric and asymmetric divisions, as well as for different growth rates. Furthermore, our data suggest that constant size extension is implemented at or close to division. Altogether, our findings provide fundamentally distinct governing principles for cell size and cell-cycle control in bacteria.
引用
收藏
页码:1433 / 1446
页数:14
相关论文
共 50 条
  • [21] Cell Growth and Size Homeostasis in Proliferating Animal Cells
    Tzur, Amit
    Kafri, Ran
    LeBleu, Valerie S.
    Lahav, Galit
    Kirschner, Marc W.
    SCIENCE, 2009, 325 (5937) : 167 - 171
  • [22] Cell size homeostasis under the circadian regulation of cell division in cyanobacteria
    Kitaguchi, Yuta
    Tei, Hajime
    Uriu, Koichiro
    JOURNAL OF THEORETICAL BIOLOGY, 2022, 553
  • [23] Relative Rates of Surface and Volume Synthesis Set Bacterial Cell Size
    Harris, Leigh K.
    Theriot, Julie A.
    CELL, 2016, 165 (06) : 1479 - 1492
  • [24] A Markovian Approach towards Bacterial Size Control and Homeostasis in Anomalous Growth Processes
    Chen, Yanyan
    Banos, Rosa
    Buceta, Javier
    SCIENTIFIC REPORTS, 2018, 8
  • [25] The evolution of bacterial cell size: the internal diffusion-constraint hypothesis
    Gallet, Romain
    Violle, Cyrille
    Fromin, Nathalie
    Jabbour-Zahab, Roula
    Enquist, Brian J.
    Lenormand, Thomas
    ISME JOURNAL, 2017, 11 (07) : 1559 - 1568
  • [26] A CozE Homolog Contributes to Cell Size Homeostasis of Streptococcus pneumoniae
    Stamsas, Gro Anita
    Restelli, Marine
    Ducret, Adrien
    Freton, Celine
    Garcia, Pierre Simon
    Havarstein, Leiv Sigve
    Straume, Daniel
    Grangeasse, Christophe
    Kjos, Morten
    MBIO, 2020, 11 (05): : 1 - 16
  • [27] A 'dynamic adder model' for cell size homeostasis in Dictyostelium cells
    Tanaka, Masahito
    Kitanishi-Yumura, Toshiko
    Yumura, Shigehiko
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [28] Cell-size distribution in epithelial tissue formation and homeostasis
    Puliafito, Alberto
    Primo, Luca
    Celani, Antonio
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2017, 14 (128)
  • [29] Probing Mammalian Cell Size Homeostasis by Channel-Assisted Cell Reshaping
    Varsano, Giulia
    Wang, Yuedi
    Wu, Min
    CELL REPORTS, 2017, 20 (02): : 397 - 410
  • [30] Point of view: Is cell size a spandrel?
    Amir, Ariel
    ELIFE, 2017, 6