An Unsupervised Deep-Transfer-Learning-Based Motor Imagery EEG Classification Scheme for Brain-Computer Interface

被引:15
|
作者
Wang, Xuying [1 ,2 ]
Yang, Rui [1 ,3 ]
Huang, Mengjie [4 ]
机构
[1] Xian Jiaotong Liverpool Univ, Sch Adv Technol, Suzhou 215123, Peoples R China
[2] Univ Liverpool, Sch Elect Engn Elect & Comp Sci, Liverpool, Merseyside, England
[3] Xian Jiaotong Liverpool Univ, Res Inst Big Data Analyt, Suzhou 215123, Peoples R China
[4] Xian Jiaotong Liverpool Univ, Design Sch, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
brain-computer interface; motor imagery; electroencephalography; transfer learning; common spatial pattern; BCI; DESIGN;
D O I
10.3390/s22062241
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Brain-computer interface (BCI) research has attracted worldwide attention and has been rapidly developed. As one well-known non-invasive BCI technique, electroencephalography (EEG) records the brain's electrical signals from the scalp surface area. However, due to the non-stationary nature of the EEG signal, the distribution of the data collected at different times or from different subjects may be different. These problems affect the performance of the BCI system and limit the scope of its practical application. In this study, an unsupervised deep-transfer-learning-based method was proposed to deal with the current limitations of BCI systems by applying the idea of transfer learning to the classification of motor imagery EEG signals. The Euclidean space data alignment (EA) approach was adopted to align the covariance matrix of source and target domain EEG data in Euclidean space. Then, the common spatial pattern (CSP) was used to extract features from the aligned data matrix, and the deep convolutional neural network (CNN) was applied for EEG classification. The effectiveness of the proposed method has been verified through the experiment results based on public EEG datasets by comparing with the other four methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Motor Imagery EEG Signal Classification based on Deep Transfer Learning
    Wei, Mingnan
    Yang, Rui
    Huang, Mengjie
    2021 IEEE 34TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2021, : 85 - 90
  • [22] A Filtering Method for Classification of Motor-Imagery EEG Signals for Brain-Computer Interface
    Ramya, Pinisetty Sri
    Yashasvi, Kondabolu
    Anjum, Arshiya
    Bhattacharyya, Abhijit
    Pachori, Ram Bilas
    PROCEEDINGS OF 2019 5TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMPUTING AND CONTROL (ISPCC 2K19), 2019, : 354 - 360
  • [23] To Explore the Potentials of Independent Component Analysis in Brain-Computer Interface of Motor Imagery
    Wu, Xiaopei
    Zhou, Bangyan
    Lv, Zhao
    Zhang, Chao
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (03) : 775 - 787
  • [24] Motor Imagery Classification for Brain Computer Interface Using Deep Metric Learning
    Alwasiti, Haider
    Yusoff, Mohd Zuki
    Raza, Kamran
    IEEE ACCESS, 2020, 8 : 109949 - 109963
  • [25] Classification of EEG Signals Based on Filter Bank and Sparse Representation in Motor Imagery Brain-Computer Interfaces
    Wang, Jin
    Wei, Qingguo
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2020, 29 (03)
  • [26] Learning-based EEG rhythm analysis for the enhancement of motor imagery-based brain-computer interface performance
    Wu, Xiaopei
    Ouyang, Rui
    Zhang, Chao
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 102
  • [27] CSP Features Extraction and FLDA Classification of EEG-Based Motor Imagery for Brain-Computer Interaction
    Belhadj, Sid Ahmed
    Benmoussat, Nawal
    Della Krachai, Mohamed
    2015 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2015, : 264 - +
  • [28] Feature Extraction of Brain-Computer Interface Electroencephalogram Based on Motor Imagery
    Shi, Tianwei
    Ren, Ling
    Cui, Wenhua
    IEEE SENSORS JOURNAL, 2020, 20 (20) : 11787 - 11794
  • [29] A Predictive Speller Controlled by a Brain-Computer Interface Based on Motor Imagery
    D'Albis, Tiziano
    Blatt, Rossella
    Tedesco, Roberto
    Sbattella, Licia
    Matteucci, Matteo
    ACM TRANSACTIONS ON COMPUTER-HUMAN INTERACTION, 2012, 19 (03)
  • [30] Meta-Learning-based Cross-Dataset Motor Imagery Brain-Computer Interface
    Kim, Jun-Mo
    Bak, Soyeon
    Nam, Hyeonyeong
    Choi, WooHyeok
    Kam, Tae-Eui
    2024 12TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE, BCI 2024, 2024,