A Dual-Split 6T SRAM-Based Computing-in-Memory Unit-Macro With Fully Parallel Product-Sum Operation for Binarized DNN Edge Processors

被引:133
作者
Si, Xin [1 ,2 ]
Khwa, Win-San [2 ,3 ]
Chen, Jia-Jing [2 ]
Li, Jia-Fang [2 ]
Sun, Xiaoyu [4 ]
Liu, Rui [5 ]
Yu, Shimeng [4 ]
Yamauchi, Hiroyuki [6 ]
Li, Qiang [1 ]
Chang, Meng-Fan [2 ]
机构
[1] Univ Elect Sci & Technol China, Inst Integrated Circuits & Syst, Chengdu 610054, Sichuan, Peoples R China
[2] Natl Tsing Hua Univ, Dept Elect Engn, Hsinchu 30013, Taiwan
[3] TSMC, Hsinchu 30078, Taiwan
[4] Georgia Inst Technol, Atlanta, GA 30332 USA
[5] Synopsys, San Francisco, CA 94107 USA
[6] Fukuoka Inst Technol, Fukuoka, Fukuoka 8110295, Japan
关键词
Computer architecture; Biological neural networks; Microprocessors; SRAM cells; Program processors; Random access memory; computing-in-memory; binarized DNN edge processors; artificial intelligence;
D O I
10.1109/TCSI.2019.2928043
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Computing-in-memory (CIM) is a promising approach to reduce the latency and improve the energy efficiency of deep neural network (DNN) artificial intelligence (AI) edge processors. However, SRAM-based CIM (SRAM-CIM) faces practical challenges in terms of area overhead, performance, energy efficiency, and yield against variations in data patterns and transistor performance. This paper employed a circuit-system co-design methodology to develop a SRAM-CIM unit-macro for a binary-based fully connected neural network (FCNN) layer of the DNN AI edge processors. The proposed SRAM-CIM unit-macro supports two binarized neural network models: an XNOR neural network (XNORNN) and a modified binary neural network (MBNN). To achieve compact area, fast access time, robust operations, and high energy-efficiency, our proposed SRAM-CIM uses a split-wordline compact-rule 6T SRAM and circuit techniques, including a dynamic input-aware reference generation (DIARG) scheme, an algorithm-dependent asymmetric control (ADAC) scheme, a write disturb-free (WDF) scheme, and a common-mode-insensitive small offset voltage-mode sensing amplifier (CMI-VSA). A fabricated 65-nm 4-Kb SRAM-CIM unit-macro achieved 2.4- and 2.3-ns product-sum access times for a FCNN layer using XNORNN and MBNN, respectively. The measured maximum energy efficiency reached 30.49 TOPS/W for XNORNN and 55.8 TOPS/W for the MBNN modes.
引用
收藏
页码:4172 / 4185
页数:14
相关论文
共 35 条
[21]  
Khwa WS, 2018, ISSCC DIG TECH PAP I, P496, DOI 10.1109/ISSCC.2018.8310401
[22]   Heat transfer enhancement in gas tungsten arc welding using azimuthal magnetic fields generated by external current [J].
Kim, Yiseul ;
Lee, Jaewook ;
Liu, Xiaolong ;
Lee, Boyoung ;
Chang, Yunlong .
MULTISCALE AND MULTIPHYSICS MECHANICS, 2016, 1 (01) :1-13
[23]  
Liu R, 2018, DES AUT CON, DOI [10.1145/3195970.3196089, 10.1109/INTMAG.2018.8508758]
[24]  
Meng-Fan Chang, 2015, 2015 IEEE International Solid-State Circuits Conference (ISSCC). Digest of Technical Papers, P1, DOI 10.1109/ISSCC.2015.7063052
[25]  
Min Ju Kim, 2015, 2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). Proceedings, P1, DOI 10.1109/CLEOPR.2015.7376173
[26]  
Mingu Kang, 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), P8326, DOI 10.1109/ICASSP.2014.6855225
[27]  
Park S, 2016, ISSCC DIG TECH PAP I, V59, P254
[28]  
Price M, 2017, ISSCC DIG TECH PAP I, P244, DOI 10.1109/ISSCC.2017.7870352
[29]   XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks [J].
Rastegari, Mohammad ;
Ordonez, Vicente ;
Redmon, Joseph ;
Farhadi, Ali .
COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 :525-542
[30]  
Simonyan K, 2015, Arxiv, DOI arXiv:1409.1556