Antitumor immunity by magnetic nanoparticle-mediated hyperthermia

被引:4
作者
Kobayashi, Takeshi [1 ]
Kakimi, Kazuhiro [2 ]
Nakayama, Eiichi [3 ]
Jimbow, Kowichi [4 ,5 ]
机构
[1] Chubu Univ, Res Inst Biol Funct, Kasugai, Aichi 4878501, Japan
[2] Tokyo Univ Hosp, Dept Immunotherapeut Medinet, Bunkyo Ku, Tokyo 1138655, Japan
[3] Kawasaki Univ Med Welf, Fac Hlth & Welf, Kurashiki, Okayama 7010193, Japan
[4] Inst Dermatol & Cutaneous Sci, Sapporo, Hokkaido 0600042, Japan
[5] Sapporo Med Univ, Sch Med, Dept Dermatol, Sapporo, Hokkaido 0608556, Japan
关键词
antitumor therapy; heat-shock proteins; hyperthermia; immune response; magnetic nanoparticles; tumor immunity; HEAT-SHOCK PROTEINS; RENAL-CELL CARCINOMA; INTRACELLULAR HYPERTHERMIA; DENDRITIC CELLS; PROSTATE-CANCER; CLINICAL-APPLICATIONS; CATIONIC LIPOSOMES; BREAST-CANCER; IMMUNOTHERAPY; THERMOTHERAPY;
D O I
10.2217/NNM.14.106
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Magnetic nanoparticle-mediated hyperthermia (MNHT) generates heat to a local tumor tissue of above 43 degrees C without damaging surrounding normal tissues. By applying MNHT, a significant amount of heat-shock proteins is expressed within and around the tumor tissues, inducing tumor-specific immune responses. In vivo experiments have indicated that MNHT can induce the regression of not only a local tumor tissue exposed to heat, but also distant metastatic tumors unexposed to heat. In this article, we introduce recent progress in the application of MNHT for antitumor treatments and summarize the mechanisms and processes of its biological effects during antitumor induction by MNHT. Several clinical trials have been conducted indicating that the MNHT system may add a promising and novel approach to antitumor therapy.
引用
收藏
页码:1715 / 1726
页数:12
相关论文
共 91 条
[21]   SELECTIVE INDUCTIVE HEATING OF LYMPH NODES [J].
GILCHRIST, RK ;
MEDAL, R ;
SHOREY, WD ;
HANSELMAN, RC ;
PARROTT, JC ;
TAYLOR, CB .
ANNALS OF SURGERY, 1957, 146 (04) :596-606
[22]   Description and characterization of the novel hyperthermia- and thermoablation-system MFH®300F for clinical magnetic fluid hyperthermia [J].
Gneveckow, U ;
Jordan, A ;
Scholz, R ;
Brüss, V ;
Waldöfner, N ;
Ricke, J ;
Feussner, A ;
Hildebrandt, B ;
Rau, B ;
Wust, P .
MEDICAL PHYSICS, 2004, 31 (06) :1444-1451
[23]   INTRACELLULAR HYPERTHERMIA - BIOPHYSICAL APPROACH TO CANCER-TREATMENT VIA INTRACELLULAR TEMPERATURE AND BIOPHYSICAL ALTERATIONS [J].
GORDON, RT ;
HINES, JR ;
GORDON, D .
MEDICAL HYPOTHESES, 1979, 5 (01) :83-102
[24]   The 'peptidome' of tumour-derived chaperone-rich cell lysate anti-cancer vaccines reveals potential tumour antigens that stimulate tumour immunity [J].
Graner, Michael W. ;
Romanoski, Angela ;
Katsanis, Emmanuel .
INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2013, 29 (05) :380-389
[25]   EGFRvIII Antibody-Conjugated Iron Oxide Nanoparticles for Magnetic Resonance Imaging-Guided Convection-Enhanced Delivery and Targeted Therapy of Glioblastoma [J].
Hadjipanayis, Costas G. ;
Machaidze, Revaz ;
Kaluzova, Milota ;
Wang, Liya ;
Schuette, Albert J. ;
Chen, Hongwei ;
Wu, Xinying ;
Mao, Hui .
CANCER RESEARCH, 2010, 70 (15) :6303-6312
[26]   Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia [J].
Hergt, Rudolf ;
Dutz, Silvio ;
Roeder, Michael .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (38)
[27]   The cellular and molecular basis of hyperthermia [J].
Hildebrandt, B ;
Wust, P ;
Ahlers, O ;
Dieing, A ;
Sreenivasa, G ;
Kerner, T ;
Felix, R ;
Riess, H .
CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, 2002, 43 (01) :33-56
[28]  
Imai T., 2011, 28 ANN M JAP SOC THE, pS3
[29]   Genomic DNA released by dying cells induces the maturation of APCs [J].
Ishii, KJ ;
Suzuki, K ;
Coban, C ;
Takeshita, F ;
Itoh, Y ;
Matoba, H ;
Kohn, LD ;
Klinman, DM .
JOURNAL OF IMMUNOLOGY, 2001, 167 (05) :2602-2607
[30]   Medical application of functionalized magnetic nanoparticles [J].
Ito, A ;
Shinkai, M ;
Honda, H ;
Kobayashi, T .
JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2005, 100 (01) :1-11