Antitumor immunity by magnetic nanoparticle-mediated hyperthermia

被引:4
作者
Kobayashi, Takeshi [1 ]
Kakimi, Kazuhiro [2 ]
Nakayama, Eiichi [3 ]
Jimbow, Kowichi [4 ,5 ]
机构
[1] Chubu Univ, Res Inst Biol Funct, Kasugai, Aichi 4878501, Japan
[2] Tokyo Univ Hosp, Dept Immunotherapeut Medinet, Bunkyo Ku, Tokyo 1138655, Japan
[3] Kawasaki Univ Med Welf, Fac Hlth & Welf, Kurashiki, Okayama 7010193, Japan
[4] Inst Dermatol & Cutaneous Sci, Sapporo, Hokkaido 0600042, Japan
[5] Sapporo Med Univ, Sch Med, Dept Dermatol, Sapporo, Hokkaido 0608556, Japan
关键词
antitumor therapy; heat-shock proteins; hyperthermia; immune response; magnetic nanoparticles; tumor immunity; HEAT-SHOCK PROTEINS; RENAL-CELL CARCINOMA; INTRACELLULAR HYPERTHERMIA; DENDRITIC CELLS; PROSTATE-CANCER; CLINICAL-APPLICATIONS; CATIONIC LIPOSOMES; BREAST-CANCER; IMMUNOTHERAPY; THERMOTHERAPY;
D O I
10.2217/NNM.14.106
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Magnetic nanoparticle-mediated hyperthermia (MNHT) generates heat to a local tumor tissue of above 43 degrees C without damaging surrounding normal tissues. By applying MNHT, a significant amount of heat-shock proteins is expressed within and around the tumor tissues, inducing tumor-specific immune responses. In vivo experiments have indicated that MNHT can induce the regression of not only a local tumor tissue exposed to heat, but also distant metastatic tumors unexposed to heat. In this article, we introduce recent progress in the application of MNHT for antitumor treatments and summarize the mechanisms and processes of its biological effects during antitumor induction by MNHT. Several clinical trials have been conducted indicating that the MNHT system may add a promising and novel approach to antitumor therapy.
引用
收藏
页码:1715 / 1726
页数:12
相关论文
共 91 条
[1]   The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy [J].
Apetoh, Lionel ;
Ghiringhelli, Francois ;
Tesniere, Antoine ;
Criollo, Alfredo ;
Ortiz, Carla ;
Lidereau, Rosette ;
Mariette, Christophe ;
Chaput, Nathalie ;
Mira, Jean-Paul ;
Delaloge, Suzette ;
Andre, Fabrice ;
Tursz, Thomas ;
Kroemer, Guido ;
Zitvogel, Laurence .
IMMUNOLOGICAL REVIEWS, 2007, 220 :47-59
[2]   HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine [J].
Asea, A ;
Kraeft, SK ;
Kurt-Jones, EA ;
Stevenson, MA ;
Chen, LB ;
Finberg, RW ;
Koo, GC ;
Calderwood, SK .
NATURE MEDICINE, 2000, 6 (04) :435-442
[3]   Induced cell toxicity originates dendritic cell death following magnetic hyperthermia treatment [J].
Asin, L. ;
Goya, G. F. ;
Tres, A. ;
Ibarra, M. R. .
CELL DEATH & DISEASE, 2013, 4 :e596-e596
[4]   SENSITIVITY OF HUMAN NATURAL-KILLER CELLS TO HYPERTHERMIA [J].
AZOCAR, J ;
YUNIS, EJ ;
ESSEX, M .
LANCET, 1982, 1 (8262) :16-17
[5]   Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κB pathway [J].
Basu, S ;
Binder, RJ ;
Suto, R ;
Anderson, KM ;
Srivastava, PK .
INTERNATIONAL IMMUNOLOGY, 2000, 12 (11) :1539-1546
[6]   CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin [J].
Basu, S ;
Binder, RJ ;
Ramalingam, T ;
Srivastava, PK .
IMMUNITY, 2001, 14 (03) :303-313
[7]   ARRHENIUS ANALYSIS OF HEAT SURVIVAL CURVES FROM NORMAL AND THERMOTOLERANT CHO CELLS [J].
BAUER, KD ;
HENLE, KJ .
RADIATION RESEARCH, 1979, 78 (02) :251-263
[8]   CD40-Independent Engagement of Mammalian hsp70 by Antigen-Presenting Cells [J].
Binder, Robert J. .
JOURNAL OF IMMUNOLOGY, 2009, 182 (11) :6844-6850
[9]   Cellular and molecular chaperone fusion vaccines: Targeting resistant cancer cell populations [J].
Calderwood, Stuart K. ;
Gong, Jianlin ;
Stevenson, Mary Ann ;
Murshid, Ayesha .
INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2013, 29 (05) :376-379
[10]  
Castelli C, 2001, CANCER RES, V61, P222