Central critical values of modular L-functions and coefficients of half-integral weight modular forms modulo l

被引:9
作者
Ahlgren, Scott
Boylan, Matthew
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
关键词
D O I
10.1353/ajm.2007.0006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If F(z) is a newform of weight 2 lambda and D is a fundamental discriminant, then let L(F circle times chi(D), s) be the usual twisted L-series. We study the algebraic parts of the central critical values of these twisted L-series modulo primes E. We show that if there are two D (subject to some local conditions) for which the algebraic part of L(F circle times chi(D), A) is not 0 (mod l), then there are infinitely many such D. These results depend on precise nonvanishing results for the Fourier coefficients of half-integral weight modular forms modulo l, which are of independent interest.
引用
收藏
页码:429 / 454
页数:26
相关论文
共 35 条
[1]   Coefficients of half-integral weight modular forms modulo lj [J].
Ahlgren, S ;
Boylan, M .
MATHEMATISCHE ANNALEN, 2005, 331 (01) :219-+
[2]   HECKE OPERATORS ON GAMMAO(M) [J].
ATKIN, AOL ;
LEHNER, J .
MATHEMATISCHE ANNALEN, 1970, 185 (02) :134-&
[3]   Coefficients of half-integral weight modular forms (vol 99, pg 164, 2003) [J].
Bruinier, JH ;
Ono, K .
JOURNAL OF NUMBER THEORY, 2004, 104 (02) :378-379
[4]   Coefficients of half-integral weight modular forms [J].
Bruinier, JH ;
Ono, K .
JOURNAL OF NUMBER THEORY, 2003, 99 (01) :164-179
[5]   Nonvanishing modulo l of Fourier coefficients of half-integral weight modular forms [J].
Bruinier, JH .
DUKE MATHEMATICAL JOURNAL, 1999, 98 (03) :595-611
[6]   On a theorem of Vigneras [J].
Bruinier, JH .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1998, 68 (1) :163-168
[7]   NONVANISHING THEOREMS FOR L-FUNCTIONS OF MODULAR-FORMS AND THEIR DERIVATIVES [J].
BUMP, D ;
FRIEDBERG, S ;
HOFFSTEIN, J .
INVENTIONES MATHEMATICAE, 1990, 102 (03) :543-618
[8]  
Darmon H., 2004, CBMS Regional Conf. Ser. Math., V101
[9]  
DELIGNE P, 1974, ANN SCI ECOLE NORM S, V7, P507
[10]  
Farb B., 1990, PROGR MATH, V87, P435