Structural and Dynamic Insights into SARS-CoV-2 Spike- Protein-Montmorillonite Interactions

被引:8
|
作者
Tiwari, Shivam [1 ]
Adupa, Vasista [1 ]
Das, Dhanesh Sing [1 ]
Reddy, K. Anki [2 ]
Bharat, Tadikonda Venkata [1 ]
机构
[1] Indian Inst Technol, Dept Chem Engn, Gauhati 781039, Assam, India
[2] Indian Inst Technol, Dept Chem Engn, Tirupati 517506, Andhra Pradesh, India
关键词
MOLECULAR-DYNAMICS; FUNCTIONAL RECEPTOR; LYSOZYME ADSORPTION; SIMULATIONS; DELIVERY; ACE2; NANOPARTICLES; CORONAVIRUS; SYSTEM;
D O I
10.1021/acs.langmuir.2c00837
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The spike (S) protein of SARS-CoV-2 has been found to play a decisive role in the cell entry mechanism of the virus and has been the prime target of most vaccine development efforts. Although numerous vaccines are already in use and more than half of the world population has been fully vaccinated, the emergence of new variants of the virus poses a challenge to the existing vaccines. Hence, developing an effective drug therapy is a crucial step in ending the pandemic. Nanoparticles can play a crucial role as a drug or a drug carrier and help tackle the pandemic effectively. Here, we performed explicit all-atom molecular dynamics simulations to probe interactions between S protein and Montmorillonite (MMT) nano clay surface. We built two systems with different counterions (Na(+ )and Ca2+), namely Na-MMT and Ca-MMT, to investigate the effect of different ions on S protein-MMT interaction. Structural modification of S protein was observed in the presence of MMT surface, particularly the loss of helical content of S protein. We revealed that electrostatic and hydrophobic interactions synergistically govern the S protein-MMT interactions. However, hydrophobic interactions were more pronounced in the Na-MMT system than in Ca-MMT. We also revealed residues and glycans of S protein closely interacting with the MMT surface. Interestingly, N165 and N343, which we found to be closely interacting with MMT in our simulations, also have a critical role in cell entry and in thwarting the cell's immune response in recent studies. Overall, our work provides atomistic insights into S protein-MMT interaction and enriches our understanding of the nanoparticle-S protein interaction mechanism, which will help develop advanced therapeutic techniques in the future.
引用
收藏
页码:9186 / 9194
页数:9
相关论文
共 50 条
  • [21] Structural basis of SARS-CoV-2 spike protein induced by ACE2
    Meirson, Tomer
    Bomze, David
    Markel, Gal
    BIOINFORMATICS, 2021, 37 (07) : 929 - 936
  • [22] Cellular signalling by SARS-CoV-2 spike protein
    Gracie, Nicholas P.
    Lai, Lachlan Y. S.
    Newsome, Timothy P.
    MICROBIOLOGY AUSTRALIA, 2024, 45 (01) : 13 - 17
  • [23] The Elusive Coreceptors for the SARS-CoV-2 Spike Protein
    Berkowitz, Reed L. L.
    Ostrov, David A. A.
    VIRUSES-BASEL, 2023, 15 (01):
  • [24] SARS-CoV-2 Spike Protein Interaction Space
    Lungu, Claudiu N.
    Putz, Mihai V.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (15)
  • [25] Proteolytic activation of SARS-CoV-2 spike protein
    Takeda, Makoto
    MICROBIOLOGY AND IMMUNOLOGY, 2022, 66 (01) : 15 - 23
  • [26] Is the Stalk of the SARS-CoV-2 Spike Protein Druggable?
    Pipito, Ludovico
    Reynolds, Christopher A.
    Deganutti, Giuseppe
    VIRUSES-BASEL, 2022, 14 (12):
  • [27] Allosteric regulation in SARS-CoV-2 spike protein
    Wei, Yong
    Chen, Amy X.
    Lin, Yuewei
    Wei, Tao
    Qiao, Baofu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (08) : 6582 - 6589
  • [28] Mutations and Evolution of the SARS-CoV-2 Spike Protein
    Magazine, Nicholas
    Zhang, Tianyi
    Wu, Yingying
    McGee, Michael C.
    Veggiani, Gianluca
    Huang, Weishan
    VIRUSES-BASEL, 2022, 14 (03):
  • [29] SARS-CoV-2 spike protein allays pain
    Sekhar, Jerin
    Passi, Gouri Rao
    INDIAN PEDIATRICS, 2020, 57 (11) : 1091 - 1091
  • [30] The roles of glycans in the SARS-CoV-2 spike protein
    Casalino, Lorenzo
    Amaro, Rommie E.
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 459A - 460A