Macroscopic-Assembled-Graphene Nanofilms/Germanium Broadband Photodetectors

被引:7
作者
Liu, Lixiang [1 ,2 ]
Cao, Xiaoxue [2 ,3 ]
Peng, Li [3 ]
Bodepudi, Srikrishna Chanakya [1 ,2 ]
Wu, Shaoxiong [1 ,2 ]
Fang, Wenzhang [3 ]
Liu, Junxue [4 ]
Xiao, Yejun [4 ]
Wang, Xiaochen [1 ,2 ]
Di, Zengfeng [5 ]
Cheng, Ran [2 ]
Xu, Yang [1 ,2 ]
Gao, Chao [3 ]
Yu, Bin [1 ,2 ]
机构
[1] Zhejiang Univ, Sch Micronano Elect, ZJU UIUC Joint Inst, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, State Key Lab Silicon Mat, ZJU Hangzhou Global Sci & Technol Innovat Ctr, Hangzhou 310027, Peoples R China
[3] Zhejiang Univ, MOE Key Lab Macromol Synth & Functionalizat, Dept Polymer Sci & Engn, Hangzhou 310027, Peoples R China
[4] Chinese Acad Sci, State Key Lab Mol React Dynam & Dynam, Dalian 116023, Peoples R China
[5] Chinese Acad Sci, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
来源
2021 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM) | 2021年
基金
中国博士后科学基金;
关键词
D O I
10.1109/IEDM19574.2021.9720694
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Germanium (Ge) based devices are widely used in optical communications and image sensors due to the brilliant properties of Ge (high carrier mobility, excellent CMOS compatibility). Here, by integrating Ge with the nanofilms of macroscopic-assembled-graphene (nMAG) - large-scale highly crystalline graphene nanofilm, we demonstrated a high-performance Schottky diode. The device shows a detection bandwidth of 1.5 to 4 mu m with responsivities ranging from 1.1 A/W to 40 mA/W and specific detectivity between 10(11) to 10(9) Jones, and a rising time of similar to 80 ns at room temperature. Such performance is a result of the broadband and strong absorption, the long carrier relaxation time (20 ps) of nMAG, and the low Schottky barrier of nMAG/Ge junction. The broadband detection range of this detector is comparable to the state-of-the-art Ge-based IR photodiodes.
引用
收藏
页数:4
相关论文
共 16 条
[1]   Graphene and two-dimensional materials for silicon technology [J].
Akinwande, Deji ;
Huyghebaert, Cedric ;
Wang, Ching-Hua ;
Serna, Martha I. ;
Goossens, Stijn ;
Li, Lain-Jong ;
Wong, H. -S. Philip ;
Koppens, Frank H. L. .
NATURE, 2019, 573 (7775) :507-518
[2]   Universal Scaling Laws in Schottky Heterostructures Based on Two-Dimensional Materials [J].
Ang, Yee Sin ;
Yang, Hui Ying ;
Ang, L. K. .
PHYSICAL REVIEW LETTERS, 2018, 121 (05)
[3]  
Balandin AA, 2013, NAT NANOTECHNOL, V8, P549, DOI [10.1038/NNANO.2013.144, 10.1038/nnano.2013.144]
[4]   The structure of musical harmony as an ordered phase of sound: A statistical mechanics approach to music theory [J].
Berezovsky, Jesse .
SCIENCE ADVANCES, 2019, 5 (05)
[5]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[6]   Internal Photoemission Theory: Comments and Theoretical Limitations on the Performance of Near-Infrared Silicon Schottky Photodetectors [J].
Casalino, Maurizio .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2016, 52 (04)
[7]   High-Responsivity Near-Infrared Photodetector Using Gate-Modulated Graphene/Germanium Schottky Junction [J].
Chang, Kyoung Eun ;
Kim, Cihyun ;
Yoo, Tae Jin ;
Kwon, Min Gyu ;
Heo, Sunwoo ;
Kim, So-Young ;
Hyun, Yujun ;
Yoo, Jung Il ;
Ko, Heung Cho ;
Lee, Byoung Hun .
ADVANCED ELECTRONIC MATERIALS, 2019, 5 (06)
[8]   Ge/Oxide Structured Programmable Phototransistors [J].
Chen, Bing ;
Xu, Shun ;
Cheng, Ran ;
Zhao, Yi .
IEEE ELECTRON DEVICE LETTERS, 2019, 40 (04) :632-634
[9]   High-k dielectric interlayered ITO/germanium Schottky photodiodes with low dark current and high photoconductive gain [J].
Huang, Zhiwei ;
Yu, Chunyu ;
Chang, Ailing ;
Zhao, Yimo ;
Huang, Wei ;
Chen, Songyan ;
Li, Cheng .
JOURNAL OF MATERIALS SCIENCE, 2020, 55 (20) :8630-8641
[10]   Effect of the RC time on photocurrent transients and determination of charge carrier mobilities [J].
Kniepert, Juliane ;
Neher, Dieter .
JOURNAL OF APPLIED PHYSICS, 2017, 122 (19)