Symplectic Radon Transform and the Metaplectic Representation

被引:5
作者
de Gosson, Maurice A. [1 ]
机构
[1] Univ Vienna, Fac Math NuHAG, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
关键词
radon transform; metaplectic group; Lagrangian planes; symplectic tomography; QUANTUM; STATES;
D O I
10.3390/e24060761
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the symplectic Radon transform from the point of view of the metaplectic representation of the symplectic group and its action on the Lagrangian Grassmannian. We give rigorous proofs in the general setting of multi-dimensional quantum systems. We interpret the Radon transform of a quantum state as a generalized marginal distribution for its Wigner transform; the inverse Radon transform thus appears as a "demarginalization process" for the Wigner distribution.
引用
收藏
页数:13
相关论文
共 23 条
[1]   Generalized quantum tomographic maps [J].
Asorey, M. ;
Facchi, P. ;
Man'ko, V. I. ;
Marmo, G. ;
Pascazio, S. ;
Sudarshan, E. C. G. .
PHYSICA SCRIPTA, 2012, 85 (06)
[2]   Entangled Qubit States and Linear Entropy in the Probability Representation of Quantum Mechanics [J].
Chernega, Vladimir N. ;
Man'ko, Olga, V ;
Man'ko, Vladimir, I .
ENTROPY, 2022, 24 (04)
[3]  
de Gosson M., 2018, Quanta, V7, P74, DOI DOI 10.12743/QUANTA.V7I1.74
[4]  
de Gosson M., 2017, The Wigner Transform. Advanced Textbooks in Mathematics
[5]  
De Gosson M. A., 2006, OPER THEOR, V166
[6]   The Pauli Problem for Gaussian Quantum States: Geometric Interpretation [J].
de Gosson, Maurice A. .
MATHEMATICS, 2021, 9 (20)
[7]   Imprints of the Quantum World in Classical Mechanics [J].
de Gosson, Maurice A. ;
Hiley, Basil J. .
FOUNDATIONS OF PHYSICS, 2011, 41 (09) :1415-1436
[8]  
deGosson M. A., 2021, ADV ANAL GEOMETRY, V4
[9]   On the inversion of the Radon transform: standard versus M2 approach [J].
Facchi, Paolo ;
Ligabo, Marilena ;
Pascazio, Saverio .
JOURNAL OF MODERN OPTICS, 2010, 57 (03) :239-243
[10]  
Grochenig Karlheinz, 2001, FDN TIME FREQUENCY A