Superpixel Based Dimension Reduction for Hyperspectral Imagery

被引:0
作者
Xu, Huilin [1 ]
Zhang, Hongyan [1 ]
He, Wei [2 ]
Zhang, Liangpei [1 ]
机构
[1] Wuhan Univ, LISMARS, Wuhan 430079, Hubei, Peoples R China
[2] RIKEN AIP, Geoinformat Unit, Tokyo, Japan
来源
IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2018年
基金
中国国家自然科学基金;
关键词
Hyperspectral image; dimension reduction; superpixel; spectral-spatial; CLASSIFICATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper focuses on dimension reduction (DR) technique for hyperspectral image (HSI). In this paper, we proposed a superpixel-based linear discriminant analysis (SP-LDA) dimension reduction method for HSI classification. Pixels within a local spatial neighborhood are expected to have similar spectral curves and share the same class label. To fully exploit the spatial structure, superpixel segmentation is firstly introduced to generate the superpixel map, which can adaptively explore the neighborhood structure information. Moreover, we extend the SP-LDA algorithm by combining the extracted feature from spectral and spatial dimensions, which can fully exploit complementary and consistent information from both dimensions. The experimental results on two standard hyperspectral datasets confirm the superiority of the proposed algorithms.
引用
收藏
页码:2575 / 2578
页数:4
相关论文
共 11 条
  • [1] [Anonymous], AMSTER658
  • [2] Classification of hyperspectral data from urban areas based on extended morphological profiles
    Benediktsson, JA
    Palmason, JA
    Sveinsson, JR
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03): : 480 - 491
  • [3] Chen H.-T., 2005, CVPR, P846
  • [4] Classification of Hyperspectral Images by Exploiting Spectral-Spatial Information of Superpixel via Multiple Kernels
    Fang, Leyuan
    Li, Shutao
    Duan, Wuhui
    Ren, Jinchang
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (12): : 6663 - 6674
  • [5] Dimensionality Reduction of Hyperspectral Image with Graph-Based Discriminant Analysis Considering Spectral Similarity
    Feng, Fubiao
    Li, Wei
    Du, Qian
    Zhang, Bing
    [J]. REMOTE SENSING, 2017, 9 (04):
  • [6] Weighted Sparse Graph Based Dimensionality Reduction for Hyperspectral Images
    He, Wei
    Zhang, Hongyan
    Zhang, Liangpei
    Philips, Wilfried
    Liao, Wenzhi
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (05) : 686 - 690
  • [7] Jolliffe IT., 1986, Principal Component Analysis for Special Types of Data, P115, DOI 10.1007/978-1-4757-1904-8_7
  • [8] Nonparametric weighted feature extraction for classification
    Kuo, BC
    Landgrebe, DA
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (05): : 1096 - 1105
  • [9] Generalized Composite Kernel Framework for Hyperspectral Image Classification
    Li, Jun
    Marpu, Prashanth Reddy
    Plaza, Antonio
    Bioucas-Dias, Jose M.
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (09): : 4816 - 4829
  • [10] Sugiyama M, 2007, J MACH LEARN RES, V8, P1027