Quantum geometric tensor and quantum phase transitions in the Lipkin-Meshkov-Glick model

被引:17
作者
Gutierrez-Ruiz, Daniel [1 ]
Gonzalez, Diego [1 ,2 ]
Chavez-Carlos, Jorge [3 ]
Hirsch, Jorge G. [1 ]
Vergara, J. David [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Apartado Postal 70-543, Mexico City 04510, DF, Mexico
[2] CINVESTAV, Dept Fis, Ave Inst Politecn Nacl 2508, Mexico City 07360, DF, Mexico
[3] Univ Nacl Autonoma Mexico, Inst Ciencias Fis, Cuernavaca 62210, Morelos, Mexico
关键词
BODY APPROXIMATION METHODS; SOLVABLE MODEL; VALIDITY; BEHAVIOR; FIELD;
D O I
10.1103/PhysRevB.103.174104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the quantum metric tensor and its scalar curvature for a particular version of the Lipkin-Meshkov-Glick model. We build the classical Hamiltonian using Bloch coherent states and find its stationary points. They exhibit the presence of a ground-state quantum phase transition where a bifurcation occurs, showing a change in stability associated with an excited-state quantum phase transition. Symmetrically, for a sign change in one Hamiltonian parameter, the same phenomenon is observed in the highest-energy state. Employing the Holstein-Primakoff approximation, we derive analytic expressions for the quantum metric tensor and compute the scalar and Berry curvatures. We contrast the analytic results with their finite-size counterparts obtained through exact numerical diagonalization and find excellent agreement between them for large sizes of the system in a wide region of the parameter space except in points near the phase transition where the Holstein-Primakoff approximation ceases to be valid.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Quantum computing for the Lipkin model with unitary coupled cluster and structure learning ansatz *
    Chikaoka, Asahi
    Liang, Haozhao
    CHINESE PHYSICS C, 2022, 46 (02)
  • [42] Quantum geometric tensor and critical metrology in the anisotropic Dicke model
    Zhu, Xin
    Lu, Jia-Hao
    Ning, Wen
    Shen, Li-Tuo
    Wu, Fan
    Yang, Zhen-Biao
    PHYSICAL REVIEW A, 2024, 109 (05)
  • [43] Quantum Phase Transitions in periodically quenched systems
    Saiz, A.
    Khalouf-Rivera, J.
    Arias, J. M.
    Perez-Fernandez, P.
    Casado-Pascual, J.
    QUANTUM, 2024, 8
  • [44] Quantum phase transitions in the LMG model by means of quantum information concepts
    Castanos, O.
    Lopez-Pena, R.
    Nahmad-Achar, E.
    Hirsch, J. G.
    XXXV SYMPOSIUM ON NUCLEAR PHYSICS, 2012, 387
  • [45] Quantum critical detector: amplifying weak signals using discontinuous quantum phase transitions
    Yang, Li-Ping
    Jacob, Zubin
    OPTICS EXPRESS, 2019, 27 (08): : 10482 - 10494
  • [46] Linking phase transitions and quantum entanglement at arbitrary temperature
    Wei, Bo-Bo
    PHYSICAL REVIEW A, 2018, 97 (04)
  • [47] Scaling dimension of fidelity susceptibility in quantum phase transitions
    Gu, Shi-Jian
    Lin, Hai-Qing
    EPL, 2009, 87 (01)
  • [48] THERMODYNAMIC DETECTION OF QUANTUM PHASE TRANSITIONS
    Kruse, M. K. G.
    Miller, H. G.
    Plastino, A.
    Plastino, A. R.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (25-26): : 5027 - 5036
  • [49] FIDELITY APPROACH TO QUANTUM PHASE TRANSITIONS
    Gu, Shi-Jian
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (23): : 4371 - 4458
  • [50] QUANTUM PHASE TRANSITIONS AND NUCLEAR STRUCTURE
    Cejnar, P.
    Stransky, P.
    Macek, M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2009, 18 (04) : 965 - 974