Quantum geometric tensor and quantum phase transitions in the Lipkin-Meshkov-Glick model

被引:17
作者
Gutierrez-Ruiz, Daniel [1 ]
Gonzalez, Diego [1 ,2 ]
Chavez-Carlos, Jorge [3 ]
Hirsch, Jorge G. [1 ]
Vergara, J. David [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Apartado Postal 70-543, Mexico City 04510, DF, Mexico
[2] CINVESTAV, Dept Fis, Ave Inst Politecn Nacl 2508, Mexico City 07360, DF, Mexico
[3] Univ Nacl Autonoma Mexico, Inst Ciencias Fis, Cuernavaca 62210, Morelos, Mexico
关键词
BODY APPROXIMATION METHODS; SOLVABLE MODEL; VALIDITY; BEHAVIOR; FIELD;
D O I
10.1103/PhysRevB.103.174104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the quantum metric tensor and its scalar curvature for a particular version of the Lipkin-Meshkov-Glick model. We build the classical Hamiltonian using Bloch coherent states and find its stationary points. They exhibit the presence of a ground-state quantum phase transition where a bifurcation occurs, showing a change in stability associated with an excited-state quantum phase transition. Symmetrically, for a sign change in one Hamiltonian parameter, the same phenomenon is observed in the highest-energy state. Employing the Holstein-Primakoff approximation, we derive analytic expressions for the quantum metric tensor and compute the scalar and Berry curvatures. We contrast the analytic results with their finite-size counterparts obtained through exact numerical diagonalization and find excellent agreement between them for large sizes of the system in a wide region of the parameter space except in points near the phase transition where the Holstein-Primakoff approximation ceases to be valid.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] PROTON-NEUTRON RANDOM PHASE APPROXIMATION STUDIED BY THE LIPKIN-MESHKOV-GLICK MODEL IN THE SU(2)xSU(2) GROUP
    Minato, F.
    XXIII NUCLEAR PHYSICS WORKSHOP MARIE AND PIERRE CURIE: ESSENTIAL PROBLEMS IN NUCLEAR PHYSICS, 2016, 2017, 10 (01): : 131 - 138
  • [32] Localization measures of parity adapted U(D)-spin coherent states applied to the phase space analysis of the D-level Lipkin-Meshkov-Glick model
    Mayorgas, Alberto
    Guerrero, Julio
    Calixto, Manuel
    PHYSICAL REVIEW E, 2023, 108 (02)
  • [33] Role of mixed permutation symmetry sectors in the thermodynamic limit of critical three-level Lipkin-Meshkov-Glick atom models
    Calixto, Manuel
    Mayorgas, Alberto
    Guerrero, Julio
    PHYSICAL REVIEW E, 2021, 103 (01)
  • [34] The Lipkin-Meshkov-Glick model as a particular limit of the SU(1,1) Richardson-Gaudin integrable models
    Lerma H., S.
    Dukelsky, J.
    NUCLEAR PHYSICS B, 2013, 870 (02) : 421 - 443
  • [35] Dynamical Quantum Phase Transitions: A Geometric Picture
    Lang, Johannes
    Frank, Bernhard
    Halimeh, Jad C.
    PHYSICAL REVIEW LETTERS, 2018, 121 (13)
  • [36] Simulating excited states of the Lipkin model on a quantum computer
    Hlatshwayo, Manqoba Q.
    Zhang, Yinu
    Wibowo, Herlik
    LaRose, Ryan
    Lacroix, Denis
    Litvinova, Elena
    PHYSICAL REVIEW C, 2022, 106 (02)
  • [37] Quantum phase transitions in the interacting boson model
    Cejnar, Pavel
    Jolie, Jan
    PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, VOL 62, NO 1, 2009, 62 (01): : 210 - 256
  • [38] Extended Lipkin model: Proposal for implementation in a quantum platform and machine learning analysis of its phase diagram
    Baid, S.
    Saiz, A.
    Lamata, L.
    Perez-Fernandez, P.
    Romero, A. M.
    Rios, A.
    Arias, J. M.
    Garcia-Ramos, J. E.
    PHYSICAL REVIEW C, 2024, 110 (04)
  • [39] Quantum fidelity and thermal phase transitions
    Quan, H. T.
    Cucchietti, F. M.
    PHYSICAL REVIEW E, 2009, 79 (03):
  • [40] Average quantum coherence and its use in probing quantum phase transitions
    Liu, Xin-Yu
    Hu, Ming-Liang
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 609