Existence of two positive solutions for a class of semilinear elliptic equations with singularity and critical exponent
被引:9
作者:
Liao, Jia-Feng
论文数: 0引用数: 0
h-index: 0
机构:
Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
Zunyi Normal Coll, Sch Math & Computat Sci, Zunyi 563002, Guizhou, Peoples R ChinaSouthwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
Liao, Jia-Feng
[1
,2
]
Liu, Jiu
论文数: 0引用数: 0
h-index: 0
机构:
Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R ChinaSouthwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
Liu, Jiu
[1
]
Zhang, Peng
论文数: 0引用数: 0
h-index: 0
机构:
Zunyi Normal Coll, Sch Math & Computat Sci, Zunyi 563002, Guizhou, Peoples R ChinaSouthwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
Zhang, Peng
[2
]
Tang, Chun-Lei
论文数: 0引用数: 0
h-index: 0
机构:
Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R ChinaSouthwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
Tang, Chun-Lei
[1
]
机构:
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Zunyi Normal Coll, Sch Math & Computat Sci, Zunyi 563002, Guizhou, Peoples R China
We study the following singular elliptic equation with critical exponent {-Delta u = Q(x)u2*(-1) + lambda u(-gamma) in Omega, u > 0 in Omega, u = 0 on partial derivative Omega, where Omega subset of R-N (N >= 3) is a smooth bounded domain, and lambda > 0, gamma is an element of (0, 1) are real parameters. Under appropriate assumptions on Q, by the constrained minimizer and perturbation methods, we obtain two positive solutions for all lambda > 0 small enough.
引用
收藏
页码:273 / 292
页数:20
相关论文
共 19 条
[1]
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7