Existence of two positive solutions for a class of semilinear elliptic equations with singularity and critical exponent

被引:9
作者
Liao, Jia-Feng [1 ,2 ]
Liu, Jiu [1 ]
Zhang, Peng [2 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Zunyi Normal Coll, Sch Math & Computat Sci, Zunyi 563002, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
singular elliptic equation; critical exponent; positive solution; perturbation method; DIRICHLET PROBLEM; MULTIPLICITY;
D O I
10.4064/ap3606-10-2015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the following singular elliptic equation with critical exponent {-Delta u = Q(x)u2*(-1) + lambda u(-gamma) in Omega, u > 0 in Omega, u = 0 on partial derivative Omega, where Omega subset of R-N (N >= 3) is a smooth bounded domain, and lambda > 0, gamma is an element of (0, 1) are real parameters. Under appropriate assumptions on Q, by the constrained minimizer and perturbation methods, we obtain two positive solutions for all lambda > 0 small enough.
引用
收藏
页码:273 / 292
页数:20
相关论文
共 19 条