CI-NN: A Model-Driven Deep Learning-Based Constructive Interference Precoding Scheme

被引:8
作者
Lei, Ziyue [1 ]
Liao, Xuewen [1 ,2 ]
Gao, Zhenzhen [1 ]
Li, Ang [1 ]
机构
[1] Xi An Jiao Tong Univ, Fac Elect & Informat Engn, Sch Informat & Commun Engn, Xian 710049, Peoples R China
[2] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
关键词
Constructive interference (CI); deep learning (DL); precoding; neural network; interference; MIMO; OPTIMIZATION; POWER;
D O I
10.1109/LCOMM.2021.3060065
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Constructive interference (CI) precoding is a promising and efficient interference management scheme. However, the symbol-level operations required for CI precoding make this precoding scheme face a bottleneck of high computational complexity. To solve the above problem and make CI precoding applicable to high data rate transmission scenarios, in this letter, we propose a deep learning (DL)-based precoding design method driven by a CI communication model, and develop a CI neural network (CI-NN). By carefully designing a neural network with our customized loss function, the proposed scheme well meets the requirement of CI. Simultaneously, this scheme can realize user adaptive precoding according to the number of active users. The simulation results show that the proposed CI-NN can reduce time complexity effectively, while ensuring the performance of the communication model.
引用
收藏
页码:1896 / 1900
页数:5
相关论文
共 16 条
[1]   Constant Envelope Precoding by Interference Exploitation in Phase Shift Keying-Modulated Multiuser Transmission [J].
Amadori, Pierluigi Vito ;
Masouros, Christos .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2017, 16 (01) :538-550
[2]  
Ben-Tal A., 2001, LECT MODERN CONVEX O
[3]   Low-Complexity Precoding Design for Massive Multiuser MIMO Systems Using Approximate Message Passing [J].
Chen, Jung-Chieh ;
Wang, Chang-Jen ;
Wong, Kai-Kit ;
Wen, Chao-Kai .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2016, 65 (07) :5707-5714
[4]   Massive MIMO Linear Precoding: A Survey [J].
Fatema, Nusrat ;
Hua, Guang ;
Xiang, Yong ;
Peng, Dezhong ;
Natgunanathan, Iynkaran .
IEEE SYSTEMS JOURNAL, 2018, 12 (04) :3920-3931
[5]   Model-Driven Deep Learning for Physical Layer Communications [J].
He, Hengtao ;
Jin, Shi ;
Wen, Chao-Kai ;
Gao, Feifei ;
Li, Geoffrey Ye ;
Xu, Zongben .
IEEE WIRELESS COMMUNICATIONS, 2019, 26 (05) :77-83
[6]   Linear transmit processing in MIMO communications systems [J].
Joham, M ;
Utschick, W ;
Nossek, JA .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (08) :2700-2712
[7]   A Novel PAPR Reduction Scheme for OFDM System Based on Deep Learning [J].
Kim, Minhoe ;
Lee, Woongsup ;
Cho, Dong-Ho .
IEEE COMMUNICATIONS LETTERS, 2018, 22 (03) :510-513
[8]   A Tutorial on Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions [J].
Li, Ang ;
Spano, Danilo ;
Krivochiza, Jevgenij ;
Domouchtsidis, Stavros ;
Tsinos, Christos G. ;
Masouros, Christos ;
Chatzinotas, Symeon ;
Li, Yonghui ;
Vucetic, Branka ;
Ottersten, Bjorn .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2020, 22 (02) :796-839
[9]   Interference Exploitation Precoding Made Practical: Optimal Closed-Form Solutions for PSK Modulations [J].
Li, Ang ;
Masouros, Christos .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2018, 17 (11) :7661-7676
[10]   Beamforming Design for Large-Scale Antenna Arrays Using Deep Learning [J].
Lin, Tian ;
Zhu, Yu .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (01) :103-107