Interface and Defect Engineering for Metal Halide Perovskite Optoelectronic Devices

被引:406
作者
Han, Tae-Hee [1 ,2 ]
Tan, Shaun [1 ,2 ]
Xue, Jingling [1 ,2 ]
Meng, Lei [1 ,2 ]
Lee, Jin-Wook [1 ]
Yang, Yang [1 ]
机构
[1] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
defect engineering; interface engineering; light-emitting diodes; perovskite; solar cells; LIGHT-EMITTING-DIODES; ELECTRON TRANSPORTING LAYER; SOLAR-CELL PERFORMANCE; ENHANCED PHOTOLUMINESCENCE; PHOTOVOLTAIC PERFORMANCE; 2-STEP DEPOSITION; SURFACE SCIENCE; HOLE-CONDUCTOR; CRYSTAL-GROWTH; LEAD IODIDE;
D O I
10.1002/adma.201803515
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal halide perovskites have been in the limelight in recent years due to their enormous potential for use in optoelectronic devices, owing to their unique combination of properties, such as high absorption coefficient, long charge-carrier diffusion lengths, and high defect tolerance. Perovskite-based solar cells and light-emitting diodes (LEDs) have achieved remarkable breakthroughs in a comparatively short amount of time. As of writing, a certified power conversion efficiency of 22.7% and an external quantum efficiency of over 10% have been achieved for perovskite solar cells and LEDs, respectively. Interfaces and defects have a critical influence on the properties and operational stability of metal halide perovskite optoelectronic devices. Therefore, interface and defect engineering are crucial to control the behavior of the charge carriers and to grow high quality, defect-free perovskite crystals. Herein, a comprehensive review of various strategies that attempt to modify the interfacial characteristics, control the crystal growth, and understand the defect physics in metal halide perovskites, for both solar cell and LED applications, is presented. Lastly, based on the latest advances and breakthroughs, perspectives and possible directions forward in a bid to transcend what has already been achieved in this vast field of metal halide perovskite optoelectronic devices are discussed.
引用
收藏
页数:35
相关论文
共 242 条
[71]   Quantification of trap state densities in GaAs heterostructures grown at varying rates using intensity-dependent time resolved photoluminescence [J].
Haughn, C. R. ;
Schmieder, K. J. ;
Zide, J. M. O. ;
Barnett, A. ;
Ebert, C. ;
Opila, R. ;
Doty, M. F. .
APPLIED PHYSICS LETTERS, 2013, 102 (18)
[72]   Recent Advances in Spiro-MeOTAD Hole Transport Material and Its Applications in Organic-Inorganic Halide Perovskite Solar Cells [J].
Hawash, Zafer ;
Ono, Luis K. ;
Qi, Yabing .
ADVANCED MATERIALS INTERFACES, 2018, 5 (01)
[73]   Fully-Inorganic Trihalide Perovskite Nanocrystals: A New Research Frontier of Optoelectronic Materials [J].
He, Xianghong ;
Qiu, Yongcai ;
Yang, Shihe .
ADVANCED MATERIALS, 2017, 29 (32)
[74]   Deep level trapped defect analysis in CH3NH3PbI3 perovskite solar cells by deep level transient spectroscopy [J].
Heo, Sung ;
Seo, Gabseok ;
Lee, Yonghui ;
Lee, Dongwook ;
Seol, Minsu ;
Lee, Jooho ;
Park, Jong-Bong ;
Kim, Kihong ;
Yun, Dong-Jin ;
Kim, Yong Su ;
Shin, Jai Kwang ;
Ahn, Tae Kyu ;
Nazeeruddin, Mohammad Khaja .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (05) :1128-1133
[75]   Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT:PSS hole transporting layer [J].
Hou, Fuhua ;
Su, Zisheng ;
Jin, Fangming ;
Yan, Xingwu ;
Wang, Lidan ;
Zhao, Haifeng ;
Zhu, Jianzhuo ;
Chu, Bei ;
Li, Wenlian .
NANOSCALE, 2015, 7 (21) :9427-9432
[76]   Synthesis and Stabilization of Colloidal Perovskite Nanocrystals by Multidentate Polymer Micelles [J].
Hou, Shaocong ;
Guo, Yuzheng ;
Tang, Yuguo ;
Quan, Qimin .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (22) :18417-18422
[77]   A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells [J].
Hou, Yi ;
Du, Xiaoyan ;
Scheiner, Simon ;
McMeekin, David P. ;
Wang, Zhiping ;
Li, Ning ;
Killian, Manuela S. ;
Chen, Haiwei ;
Richter, Moses ;
Levchuk, Ievgen ;
Schrenker, Nadine ;
Spiecker, Erdmann ;
Stubhan, Tobias ;
Luechinger, Norman A. ;
Hirsch, Andreas ;
Schmuki, Patrik ;
Steinrueck, Hans-Peter ;
Fink, Rainer H. ;
Halik, Marcus ;
Snaith, Henry J. ;
Brabec, Christoph J. .
SCIENCE, 2017, 358 (6367) :1192-+
[78]   Enhanced Performance in Fluorene-Free Organometal Halide Perovskite Light-Emitting Diodes using Tunable, Low Electron Affinity Oxide Electron Injectors [J].
Hoye, Robert L. Z. ;
Chua, Matthew R. ;
Musselman, Kevin P. ;
Li, Guangru ;
Lai, May-Ling ;
Tan, Zhi-Kuang ;
Greenham, Neil C. ;
MacManus-Driscoll, Judith L. ;
Friend, Richard H. ;
Credgington, Dan .
ADVANCED MATERIALS, 2015, 27 (08) :1414-+
[79]   Femtosecond Excitonic Relaxation Dynamics of Perovskite on Mesoporous Films of Al2O3 and NiO Nanoparticles [J].
Hsu, Hung-Yu ;
Wang, Chi-Yung ;
Fathi, Amir ;
Shiu, Jia-Wei ;
Chung, Chih-Chun ;
Shen, Po-Shen ;
Guo, Tzung-Fang ;
Chen, Peter ;
Lee, Yuan-Pern ;
Diau, Eric Wei-Guang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (35) :9339-9342
[80]   Hematite electron-transporting layers for environmentally stable planar perovskite solar cells with enhanced energy conversion and lower hysteresis [J].
Hu, Wei ;
Liu, Tao ;
Yin, Xuewen ;
Liu, Hu ;
Zhao, Xingyue ;
Luo, Songping ;
Guo, Ying ;
Yao, Zhibo ;
Wang, Jinshu ;
Wang, Ning ;
Lin, Hong ;
Guo, Zhanhu .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (04) :1434-1441