Intermittent outflows at the edge of an active region - a possible source of the solar wind?

被引:44
作者
He, J. -S. [1 ]
Marsch, E. [1 ]
Tu, C. -Y. [2 ]
Guo, L. -J. [2 ]
Tian, H. [2 ]
机构
[1] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany
[2] Peking Univ, Sch Earth & Space Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
solar wind; Sun: photosphere; Sun: chromosphere; Sun: corona; EUV IMAGING SPECTROMETER; LONG-PERIOD OSCILLATIONS; H-ALPHA SURGES; X-RAY JETS; CORONAL FUNNELS; MAGNETIC RECONNECTION; TRANSITION REGION; PLASMA FLOWS; POLAR PLUMES; ORIGIN;
D O I
10.1051/0004-6361/200913712
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. It has already been established that the solar wind may originate at the edges of active regions (ARs), but the key questions of how frequently these outflows occur, and at which height the nascent solar wind originates have not yet been addressed. Aims. We study the occurrence rate of these intermittent outflows, the related plasma activities beneath in the low solar atmosphere, and the interplanetary counterparts of the nascent solar wind outflow. Methods. We use the observations from XRT/Hinode and TRACE to study the outflow patterns. The occurrence frequency of the intermittent outflow is estimated by counting the occurrences of propagating intensity enhancements in height-time diagrams. We adopt observations of SOT/Hinode and EIS/Hinode to investigate the phenomena in the chromosphere associated with the coronal outflows. The ACE plasma and field in-situ measurements near Earth are used to study the interplanetary manifestations. Results. We find that in one elongated coronal emission structure, referred to as strand, the plasma flows outward intermittently, about every 20 min. The flow speed sometimes exceeds 200 km s(-1), which is indicative of rapid acceleration, and thus exceeds the coronal sound speed at low altitudes. The inferred flow speed of the soft-X-ray-emitting plasma component seems a little higher than that of the Fe IX/X-emitting plasma component. Chromospheric jets are found to occur at the root of the strand. Upflows in the chromosphere are also confirmed by blue-shifts of the He II line. The heliospheric plasma counterpart close to the Earth is found to be an intermediate-speed solar wind stream. The AR edge may also deliver some plasmas to a fraction of the fast solar wind stream, most of which emanate from the neighboring CH. Conclusions. The possible origin of the nascent solar wind in the chromosphere, the observed excessive outflow speed of over 200 km s(-1) in the lower corona, and the corresponding intermediate-speed solar wind stream in interplanetary space are all linked in our case study. These phenomena from the low solar atmosphere to the heliosphere near Earth in combination shed new light on the solar wind formation process. These observational results will constrain future modeling of the solar winds originating close to an AR.
引用
收藏
页数:9
相关论文
共 51 条
[1]   An evaluation of coronal heating models for active regions based on Yohkoh, Soho, and TRACE observations [J].
Aschwanden, MJ .
ASTROPHYSICAL JOURNAL, 2001, 560 (02) :1035-1044
[2]   Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence [J].
Bale, SD ;
Kellogg, PJ ;
Mozer, FS ;
Horbury, TS ;
Reme, H .
PHYSICAL REVIEW LETTERS, 2005, 94 (21)
[3]   Long-period oscillations in polar plumes as observed by CDS on SOHO [J].
Banerjee, D ;
O'Shea, E ;
Doyle, JG .
SOLAR PHYSICS, 2000, 196 (01) :63-78
[4]   Extreme-ultraviolet jets and Hα surges in solar microflares [J].
Chae, J ;
Qiu, J ;
Wang, HM ;
Goode, PR .
ASTROPHYSICAL JOURNAL, 1999, 513 (01) :L75-L78
[5]   A two-dimensional Alfven-wave-driven solar wind model [J].
Chen, Y ;
Hu, YQ .
SOLAR PHYSICS, 2001, 199 (02) :371-384
[6]   Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence [J].
Cranmer, Steven R. ;
van Ballegooijen, Adriaan A. ;
Edgar, Richard J. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2007, 171 (02) :520-551
[7]  
Dammasch IE, 1999, ASTRON ASTROPHYS, V346, P285
[8]   Solar chromospheric spicules from the leakage of photospheric oscillations and flows [J].
De Pontieu, B ;
Erdélyi, R ;
James, SP .
NATURE, 2004, 430 (6999) :536-539
[9]   A tale of two spicules: The impact of spicules on the magnetic chromosphere [J].
De Pontieu, Bart ;
McIntosh, Scott ;
Hansteen, Viggo H. ;
Carlsson, Mats ;
Schrijver, Carolus J. ;
Tarbell, Theodore D. ;
Title, Alan M. ;
Shine, Richard A. ;
Suematsu, Yoshinori ;
Tsuneta, Saku ;
Katsukawa, Yukio ;
Ichimoto, Kiyoshi ;
Shimizu, Toshifumi ;
Nagata, Shin'ichi .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 2007, 59 (sp3) :S655-S662
[10]   Observation of quasi-periodic compressive waves in solar polar plumes [J].
DeForest, CE ;
Gurman, JB .
ASTROPHYSICAL JOURNAL, 1998, 501 (02) :L217-L220