Photoelectrochemical water oxidation over TiO2 nanotubes modified with MoS2 and g-C3N4

被引:4
|
作者
Nguyen, Phuong Hoang [1 ]
Cao, Thi Minh [1 ]
Nguyen, Tho Truong [1 ]
Tong, Hien Duy [2 ]
Pham, Viet Van [1 ]
机构
[1] HUTECH Univ, 475A Dien Bien Phu St, Ho Chi Minh 700000, Vietnam
[2] Vietnamese German Univ VGU, Hoa Phu Ward, Fac Engn, Lai St, Thu Dau Mot, Binh Duong, Vietnam
来源
BEILSTEIN JOURNAL OF NANOTECHNOLOGY | 2022年 / 13卷
关键词
band structure; TiO2; MoS2; photoelectrochemical; water splitting; GRAPHITIC CARBON NITRIDE; HYDROGEN; PHOTOCATALYST; NANOCOMPOSITE; ENHANCEMENT; DEGRADATION; PHOTOANODES; ARRAYS;
D O I
10.3762/bjnano.13.127
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
TiO2 nanotube arrays (TNAs) have been studied for photoelectrochemical (PEC) water splitting. However, there are two major barriers of TNAs, including a low photo-response and the fast charge carrier recombination in TNAs, leading to poor photocatalyt-ic efficiency. Through a comparison of MoS2/TNAs and g-C3N4/TNAs, it was found that TNAs modified with MoS2 and g-C3N4 exhibited a current density of, respectively, 210.6 and 139.6 mu A center dot cm-2 at an overpotential of 1.23 V vs RHE, which is 18.2 and 12 times higher than that of pure TNAs under the same conditions. The stability of the MoS2/TNAs heterojunction is higher than that of g-C3N4/TNAs.
引用
收藏
页码:1541 / 1550
页数:10
相关论文
共 50 条
  • [1] INVESTIGATING THE ROLE OF CRYSTALLINE TiO2 NANOTUBES IN THE PHOTOELECTROCHEMICAL PERFORMANCE OF g-C3N4/TiO2 COMPOSITES
    Pandey, Beauty
    Shankar, Daya
    Madaka, Ramakrishna
    COMPOSITES-MECHANICS COMPUTATIONS APPLICATIONS, 2025, 16 (01):
  • [2] Fabrication of B doped g-C3N4/TiO2 heterojunction for efficient photoelectrochemical water oxidation
    Kong, Weiqian
    Zhang, Xiaofan
    Chang, Binbin
    Zhou, Yannan
    Zhang, Shouren
    He, Guangli
    Yang, Baocheng
    Li, Junjie
    ELECTROCHIMICA ACTA, 2018, 282 : 767 - 774
  • [3] G-C3N4/TiO2 nanotube array for enhanced photoelectrochemical water splitting
    Abish, V. S. Jim
    Raja, D. Henry
    Davidson, D. Jonas
    CURRENT APPLIED PHYSICS, 2024, 63 : 105 - 115
  • [4] Efficient Photoelectrochemical Water Splitting by g-C3N4/TiO2 Nanotube Array Heterostructures
    Changhai Liu
    Fang Wang
    Jin Zhang
    Ke Wang
    Yangyang Qiu
    Qian Liang
    Zhidong Chen
    Nano-Micro Letters, 2018, 10
  • [5] Efficient Photoelectrochemical Water Splitting by g-C3N4/TiO2 Nanotube Array Heterostructures
    Liu, Changhai
    Wang, Fang
    Zhang, Jin
    Wang, Ke
    Qiu, Yangyang
    Liang, Qian
    Chen, Zhidong
    NANO-MICRO LETTERS, 2018, 10 (02) : 1 - 13
  • [6] Efficient Photoelectrochemical Water Splitting by g-C3N4/TiO2 Nanotube Array Heterostructures
    Changhai Liu
    Fang Wang
    Jin Zhang
    Ke Wang
    Yangyang Qiu
    Qian Liang
    Zhidong Chen
    Nano-Micro Letters, 2018, 10 (02) : 247 - 259
  • [7] Photoelectrochemical Water Separation and Dye Degradation Catalyzed by g-C3N4/MoS2 Nanosheets Doped with V2+ Metal Ions Coated on TiO2 Nanorods
    Periyasamy, Velusamy
    Liu, Shanhu
    Sathiya, M.
    Ahmad, Awais
    Elamurugu, Elangovan
    Alothman, Asma
    Saleh Mushab, Mohammad Sheikh
    Zhang, Fuchun
    Liu, Xinghui
    ACS APPLIED NANO MATERIALS, 2024, 7 (05) : 4707 - 4720
  • [8] Photoelectrochemical biosensor for microRNA detection based on a MoS2/g-C3N4/black TiO2 heterojunction with Histostar@AuNPs for signal amplification
    Wang, Minghui
    Yin, Huanshun
    Zhou, Yunlei
    Sui, Chengji
    Wang, Yue
    Meng, Xiangjian
    Waterhouse, Geoffrey I. N.
    Ai, Shiyun
    BIOSENSORS & BIOELECTRONICS, 2019, 128 : 137 - 143
  • [9] Atomic Layer Deposition of MoS2 Decorated TiO2 Nanotubes for Photoelectrochemical Water Splitting
    Shen, Chengxu
    Wierzbicka, Ewa
    Schultz, Thorsten
    Wang, Rongbin
    Koch, Norbert
    Pinna, Nicola
    ADVANCED MATERIALS INTERFACES, 2022, 9 (20)
  • [10] Photoelectrochemical Properties of MOS2 Modified TiO2 Nanotube Arrays
    Yu Lian-Qing
    Huang Cheng-Xing
    Zhang Ya-Ping
    Dong Kai-Tuo
    Hao Lan-Zhong
    JOURNAL OF INORGANIC MATERIALS, 2016, 31 (11) : 1237 - 1241