Amplification of matter rogue waves and breathers in quasi-two-dimensional Bose-Einstein condensates

被引:16
作者
Manikandan, K. [1 ]
Senthilvelan, M. [1 ]
Kraenkel, R. A. [2 ]
机构
[1] Bharathidasan Univ, Ctr Nonlinear Dynam, Tiruchirappalli 620024, Tamil Nadu, India
[2] Univ Estadual Paulista, Inst Fis Teor, Rua Dr Bento Teobaldo Ferraz 271, BR-01140070 Sao Paulo, Brazil
关键词
NONLINEAR SCHRODINGER-EQUATION; DARK SOLITONS; DEEP-WATER; BRIGHT; FIBER;
D O I
10.1140/epjb/e2015-60936-0
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We construct rogue wave and breather solutions of a quasi-two-dimensional Gross-Pitaevskii equation with a time-dependent interatomic interaction and external trap. We show that the trapping potential and an arbitrary functional parameter that present in the similarity transformation should satisfy a constraint for the considered equation to be integrable and yield the desired solutions. We consider two different forms of functional parameters and investigate how the density of the rogue wave and breather profiles vary with respect to these functional parameters. We also construct vector localized solutions of a two coupled quasi-two-dimensional Bose-Einstein condensate system. We then investigate how the vector localized density profiles modify in the constant density background with respect to the functional parameters. Our results may help to manipulate matter rogue waves experimentally in the two-dimensional Bose-Einstein condensate systems.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 59 条
[1]   Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering length [J].
Abdullaev, FK ;
Caputo, JG ;
Kraenkel, RA ;
Malomed, BA .
PHYSICAL REVIEW A, 2003, 67 (01) :10
[2]   Rogue waves and rational solutions of the nonlinear Schroumldinger equation [J].
Akhmediev, Nail ;
Ankiewicz, Adrian ;
Soto-Crespo, J. M. .
PHYSICAL REVIEW E, 2009, 80 (02)
[3]  
AKHMEDIEV NN, 1985, ZH EKSP TEOR FIZ+, V89, P1542
[4]   Watching dark solitons decay into vortex rings in a Bose-Einstein condensate [J].
Anderson, BP ;
Haljan, PC ;
Regal, CA ;
Feder, DL ;
Collins, LA ;
Clark, CW ;
Cornell, EA .
PHYSICAL REVIEW LETTERS, 2001, 86 (14) :2926-2929
[5]   Rogue wave triplets [J].
Ankiewicz, Adrian ;
Kedziora, David J. ;
Akhmediev, Nail .
PHYSICS LETTERS A, 2011, 375 (28-29) :2782-2785
[6]   Class of solitary wave solutions of the one-dimensional Gross-Pitaevskii equation [J].
Atre, Rajneesh ;
Panigrahi, Prasanta K. ;
Agarwal, G. S. .
PHYSICAL REVIEW E, 2006, 73 (05)
[7]   Solutions of the Vector Nonlinear Schrodinger Equations: Evidence for Deterministic Rogue Waves [J].
Baronio, Fabio ;
Degasperis, Antonio ;
Conforti, Matteo ;
Wabnitz, Stefan .
PHYSICAL REVIEW LETTERS, 2012, 109 (04)
[8]   DISINTEGRATION OF WAVE TRAINS ON DEEP WATER .1. THEORY [J].
BENJAMIN, TB ;
FEIR, JE .
JOURNAL OF FLUID MECHANICS, 1967, 27 :417-&
[9]   Vector rogue waves in binary mixtures of Bose-Einstein condensates [J].
Bludov, Yu. V. ;
Konotop, V. V. ;
Akhmediev, N. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 185 (01) :169-180
[10]   Matter rogue waves [J].
Bludov, Yu. V. ;
Konotop, V. V. ;
Akhmediev, N. .
PHYSICAL REVIEW A, 2009, 80 (03)