A new variational radial basis function approximation for inference in multivariate diffusions

被引:4
作者
Vrettas, Michail D. [1 ]
Cornford, Dan [1 ]
Opper, Manfred [2 ]
Shen, Yuan [1 ]
机构
[1] Aston Univ, Neural Comp Res Grp Aston Triangle, Birmingham B4 7ET, W Midlands, England
[2] Tech Univ Berlin, Artificial Intelligence Grp, D-10587 Berlin, Germany
基金
英国工程与自然科学研究理事会;
关键词
Radial basis functions; Dynamical systems; Stochastic differential equations; Parameter estimation; Bayesian inference;
D O I
10.1016/j.neucom.2009.11.026
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we derive and present a new radial basis function framework that extends a recently proposed variational Bayesian algorithm for approximate inference in diffusion processes. Inference, for the state and in particular for the (hyper-) parameters, in such systems is a challenging and crucial task. We show that the new radial basis function approximation based algorithm not only converges to the original variational algorithm but also has beneficial characteristics when estimating (hyper-) parameters. We validate our new approach on three highly non-linear dynamical systems, namely the univariate stochastic double well, and the multivariate Lorenz 3D and Lorenz 40D systems. We show that we are able to recover good estimates of the system and noise parameters in the multivariate case, even for chaotic systems. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1186 / 1198
页数:13
相关论文
共 50 条
[41]   Multivariate posterior inference for spatial models with the integrated nested Laplace approximation [J].
Gomez-Rubio, Virgilio ;
Palmi-Perales, Francisco .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2019, 68 (01) :199-215
[42]   Approximation of Bivariate Functions by Generalized Wendland Radial Basis Functions [J].
Kouibia, Abdelouahed ;
Gonzalez, Pedro ;
Pasadas, Miguel ;
Mustafa, Bassim ;
Yakhlef, Hossain Oulad ;
Omri, Loubna .
MATHEMATICS, 2024, 12 (16)
[43]   Approximation on the sphere using radial basis functions plus polynomials [J].
Ian H. Sloan ;
Alvise Sommariva .
Advances in Computational Mathematics, 2008, 29 :147-177
[44]   Pointwise approximation with quasi-interpolation by radial basis functions [J].
Buhmann, Martin D. ;
Dai, Feng .
JOURNAL OF APPROXIMATION THEORY, 2015, 192 :156-192
[45]   Approximation on the sphere using radial basis functions plus polynomials [J].
Sloan, Ian H. ;
Sommariva, Alvise .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2008, 29 (02) :147-177
[46]   Normalized Gaussian radial basis function networks [J].
Bugmann, G .
NEUROCOMPUTING, 1998, 20 (1-3) :97-110
[47]   A RADIAL BASIS FUNCTION APPROACH TO EARNINGS FORECAST [J].
Biscontri, Robert G. .
INTELLIGENT SYSTEMS IN ACCOUNTING FINANCE & MANAGEMENT, 2012, 19 (01) :1-18
[48]   Generalized multiscale radial basis function networks [J].
Billings, Stephen A. ;
Wei, Hua-Liang ;
Balikhin, Michael A. .
NEURAL NETWORKS, 2007, 20 (10) :1081-1094
[49]   A radial basis function method for global optimization [J].
Gutmann, HM .
JOURNAL OF GLOBAL OPTIMIZATION, 2001, 19 (03) :201-227
[50]   Bipolar radial basis function inferencing networks [J].
Raghuvanshi, PS ;
Kumar, S .
NEUROCOMPUTING, 1997, 14 (02) :195-204