A new variational radial basis function approximation for inference in multivariate diffusions

被引:4
作者
Vrettas, Michail D. [1 ]
Cornford, Dan [1 ]
Opper, Manfred [2 ]
Shen, Yuan [1 ]
机构
[1] Aston Univ, Neural Comp Res Grp Aston Triangle, Birmingham B4 7ET, W Midlands, England
[2] Tech Univ Berlin, Artificial Intelligence Grp, D-10587 Berlin, Germany
基金
英国工程与自然科学研究理事会;
关键词
Radial basis functions; Dynamical systems; Stochastic differential equations; Parameter estimation; Bayesian inference;
D O I
10.1016/j.neucom.2009.11.026
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we derive and present a new radial basis function framework that extends a recently proposed variational Bayesian algorithm for approximate inference in diffusion processes. Inference, for the state and in particular for the (hyper-) parameters, in such systems is a challenging and crucial task. We show that the new radial basis function approximation based algorithm not only converges to the original variational algorithm but also has beneficial characteristics when estimating (hyper-) parameters. We validate our new approach on three highly non-linear dynamical systems, namely the univariate stochastic double well, and the multivariate Lorenz 3D and Lorenz 40D systems. We show that we are able to recover good estimates of the system and noise parameters in the multivariate case, even for chaotic systems. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1186 / 1198
页数:13
相关论文
共 50 条
[1]   Vector field radial basis function approximation [J].
Smolik, Michal ;
Skala, Vaclav ;
Majdisova, Zuzana .
ADVANCES IN ENGINEERING SOFTWARE, 2018, 123 :117-129
[2]   Lebesgue function for multivariate interpolation by radial basis functions [J].
Mehri, Bahman ;
Jokar, Sadegh .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (01) :306-314
[3]   Bayesian sequential inference for nonlinear multivariate diffusions [J].
Andrew Golightly ;
Darren J. Wilkinson .
Statistics and Computing, 2006, 16 :323-338
[4]   Multivariate interpolation using radial basis function networks [J].
Dang Thi Thu Hien ;
Hoang Xuan Huan ;
Huu Tue Huynh .
INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2009, 1 (03) :291-309
[5]   Bayesian sequential inference for nonlinear multivariate diffusions [J].
Golightly, Andrew ;
Wilkinson, Darren J. .
STATISTICS AND COMPUTING, 2006, 16 (04) :323-338
[6]   RADIAL BASIS FUNCTION APPROXIMATION IN THE DUAL RECIPROCITY METHOD [J].
KARUR, SR ;
RAMACHANDRAN, PA .
MATHEMATICAL AND COMPUTER MODELLING, 1994, 20 (07) :59-70
[7]   Radial Basis Function Approximation in Gas Turbine Overspeed Analysis [J].
Peters, Lukas ;
Goebel, Vincent ;
Schoof, Soenke ;
Kutzner, Ruediger ;
Schaefer, Marc ;
Hofmann, Lutz .
2022 10TH INTERNATIONAL CONFERENCE ON SYSTEMS AND CONTROL (ICSC), 2022, :108-113
[8]   Approximation of Antenna Data with Rational Radial Basis Function Interpolation [J].
Jakobsson, Stefan ;
Andersson, Bjorn ;
Edelvik, Fredrik .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 :473-477
[9]   An enhanced clustering function approximation technique for a radial basis function neural network [J].
Pomares, H. ;
Rojas, I. ;
Awad, M. ;
Valenzuela, O. .
MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (3-4) :286-302
[10]   Scattered Data Interpolation and Approximation with Truncated Exponential Radial Basis Function [J].
Xu, Qiuyan ;
Liu, Zhiyong .
MATHEMATICS, 2019, 7 (11)