Categorical Vector Space Semantics for Lambek Calculus with a Relevant Modality (Extended Abstract)

被引:3
作者
McPheat, Lachlan [1 ]
Sadrzadeh, Mehrnoosh [1 ]
Wazni, Hadi [2 ]
Wijnholds, Gijs [3 ]
机构
[1] UCL, London, England
[2] Queen Mary Univ London, London, England
[3] Univ Utrecht, Utrecht, Netherlands
来源
ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE | 2021年 / 333期
基金
英国工程与自然科学研究理事会;
关键词
LOGIC;
D O I
10.4204/EPTCS.333.12
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We develop a categorical compositional distributional semantics for Lambek Calculus with a Relevant Modality, !L*, which has a limited version of the contraction and permutation rules. The categorical part of the semantics is a monoidal biclosed category with a coalgebra modality as defined on Differential Categories. We instantiate this category to finite dimensional vector spaces and linear maps via "quantisation" functors and work with three concrete interpretations of the coalgebra modality. We apply the model to construct categorical and concrete semantic interpretations for the motivating example of !L*: the derivation of a phrase with a parasitic gap. The effectiveness of the concrete interpretations are evaluated via a disambiguation task, on an extension of a sentence disambiguation dataset to parasitic gap phrases, using BERT, Word2Vec, and FastText vectors and Relational tensors.
引用
收藏
页码:168 / 182
页数:15
相关论文
共 44 条
  • [1] [Anonymous], 2008, Introduction to information retrieval
  • [2] Baez J, 2011, LECT NOTES PHYS, V813, P95, DOI 10.1007/978-3-642-12821-9_2
  • [3] Barry G., 1991, PROOF FIGURES STRUCT, DOI DOI 10.3115/977180.977215
  • [4] Differential categories
    Blute, R. F.
    Cockett, J. R. B.
    Seely, R. A. G.
    [J]. MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2006, 16 (06) : 1049 - 1083
  • [5] Blute Richard, 1994, revised version of the MFPS paper Holomorphic models of exponential types in linear logic, P474
  • [6] Bojanowski P, 2017, Arxiv, DOI arXiv:1607.04606
  • [7] Hopf monads
    Bruguieres, Alain
    Virelizier, Alexis
    [J]. ADVANCES IN MATHEMATICS, 2007, 215 (02) : 679 - 733
  • [8] Coecke B, 2010, ARXIV10034394
  • [9] Lambek vs. Lambek: Functorial vector space semantics and string diagrams for Lambek calculus
    Coecke, Bob
    Grefenstette, Edward
    Sadrzadeh, Mehrnoosh
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 2013, 164 (11) : 1079 - 1100
  • [10] Curran, 2003, DISTRIBUTIONAL SEMAN