Penalty alternating direction methods for mixed-integer optimal control with combinatorial constraints

被引:5
|
作者
Goettlich, Simone [1 ]
Hante, Falk M. [2 ]
Potschka, Andreas [3 ]
Schewe, Lars [4 ]
机构
[1] Univ Mannheim, Mannheim, Germany
[2] Humboldt Univ, Unter Linden 6, D-10099 Berlin, Germany
[3] Tech Univ Clausthal, Inst Math, Erzstr 1, D-38678 Clausthal Zellerfeld, Germany
[4] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland
关键词
Mixed-integer optimization; Partial differential equations; Dwell-time constraints; Alternating direction methods; Penalty methods; PARTIAL OUTER CONVEXIFICATION; RELAXATION METHODS; OPTIMIZATION; FLOW;
D O I
10.1007/s10107-021-01656-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider mixed-integer optimal control problems with combinatorial constraints that couple over time such as minimum dwell times. We analyze a lifting and decomposition approach into a mixed-integer optimal control problem without combinatorial constraints and a mixed-integer problem for the combinatorial constraints in the control space. Both problems can be solved very efficiently with existing methods such as outer convexification with sum-up-rounding strategies and mixed-integer linear programming techniques. The coupling is handled using a penalty-approach. We provide an exactness result for the penalty which yields a solution approach that convergences to partial minima. We compare the quality of these dedicated points with those of other heuristics amongst an academic example and also for the optimization of electric transmission lines with switching of the network topology for flow reallocation in order to satisfy demands.
引用
收藏
页码:599 / 619
页数:21
相关论文
共 50 条
  • [1] Penalty alternating direction methods for mixed-integer optimal control with combinatorial constraints
    Simone Göttlich
    Falk M. Hante
    Andreas Potschka
    Lars Schewe
    Mathematical Programming, 2021, 188 : 599 - 619
  • [2] PENALTY ALTERNATING DIRECTION METHODS FOR MIXED-INTEGER OPTIMIZATION: A NEW VIEW ON FEASIBILITY PUMPS
    Geissler, Bjorn
    Morsi, Antonio
    Schewe, Lars
    Schmid, Martin
    SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (03) : 1611 - 1636
  • [3] Combinatorial Integral Approximation Decompositions for Mixed-Integer Optimal Control
    Zeile, Clemens
    Weber, Tobias
    Sager, Sebastian
    ALGORITHMS, 2022, 15 (04)
  • [4] Mixed-integer optimal control under minimum dwell time constraints
    Zeile, Clemens
    Robuschi, Nicolo
    Sager, Sebastian
    MATHEMATICAL PROGRAMMING, 2021, 188 (02) : 653 - 694
  • [5] Mixed-integer optimal control under minimum dwell time constraints
    Clemens Zeile
    Nicolò Robuschi
    Sebastian Sager
    Mathematical Programming, 2021, 188 : 653 - 694
  • [6] The integer approximation error in mixed-integer optimal control
    Sager, Sebastian
    Bock, Hans Georg
    Diehl, Moritz
    MATHEMATICAL PROGRAMMING, 2012, 133 (1-2) : 1 - 23
  • [7] The integer approximation error in mixed-integer optimal control
    Sebastian Sager
    Hans Georg Bock
    Moritz Diehl
    Mathematical Programming, 2012, 133 : 1 - 23
  • [8] Relaxation methods for mixed-integer optimal control of partial differential equations
    Falk M. Hante
    Sebastian Sager
    Computational Optimization and Applications, 2013, 55 : 197 - 225
  • [9] Relaxation methods for mixed-integer optimal control of partial differential equations
    Hante, Falk M.
    Sager, Sebastian
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 55 (01) : 197 - 225
  • [10] Relaxation methods for hyperbolic PDE mixed-integer optimal control problems
    Hante, Falk M.
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2017, 38 (06): : 1103 - 1110