Age-adjusted Charlson comorbidity index score is the best predictor for severe clinical outcome in the hospitalized patients with COVID-19 infection

被引:48
作者
Kim, Do Hyoung [1 ,2 ]
Park, Hayne Cho [1 ,2 ]
Cho, Ajin [1 ,2 ]
Kim, Juhee [1 ]
Yun, Kyu-sang [1 ]
Kim, Jinseog [3 ]
Lee, Young-Ki [1 ,2 ]
机构
[1] Hallym Univ, Kangnam Sacred Heart Hosp, Dept Internal Med, Coll Med, Seoul 07441, South Korea
[2] Hallym Univ, Kidney Res Inst, Seoul, South Korea
[3] Dongguk Univ, Dept Bigdata & Appl Stat, Gyeongju, South Korea
关键词
comorbidity; coronavirus infections; mortality; prognosis; risk factors; CORONAVIRUS DISEASE 2019; MORTALITY;
D O I
10.1097/MD.0000000000025900
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aged population with comorbidities demonstrated high mortality rate and severe clinical outcome in the patients with coronavirus disease 2019 (COVID-19). However, whether age-adjusted Charlson comorbidity index score (CCIS) predict fatal outcomes remains uncertain. This retrospective, nationwide cohort study was performed to evaluate patient mortality and clinical outcome according to CCIS among the hospitalized patients with COVID-19 infection. We included 5621 patients who had been discharged from isolation or had died from COVID-19 by April 30, 2020. The primary outcome was composites of death, admission to intensive care unit, use of mechanical ventilator or extracorporeal membrane oxygenation. The secondary outcome was mortality. Multivariate Cox proportional hazard model was used to evaluate CCIS as the independent risk factor for death. Among 5621 patients, the high CCIS (>= 3) group showed higher proportion of elderly population and lower plasma hemoglobin and lower lymphocyte and platelet counts. The high CCIS group was an independent risk factor for composite outcome (HR 3.63, 95% CI 2.45-5.37, P < .001) and patient mortality (HR 22.96, 95% CI 7.20-73.24, P < .001). The nomogram showed that CCIS was the most important factor contributing to the prognosis followed by the presence of dyspnea (hazard ratio [HR] 2.88, 95% confidence interval [CI] 2.16-3.83), low body mass index < 18.5 kg/m(2) (HR 2.36, CI 1.49-3.75), lymphopenia (<0.8 x10(9)/L) (HR 2.15, CI 1.59-2.91), thrombocytopenia (<150.0 x10(9)/L) (HR 1.29, CI 0.94-1.78), anemia (<12.0 g/dL) (HR 1.80, CI 1.33-2.43), and male sex (HR 1.76, CI 1.32-2.34). The nomogram demonstrated that the CCIS was the most potent predictive factor for patient mortality. The predictive nomogram using CCIS for the hospitalized patients with COVID-19 may help clinicians to triage the high-risk population and to concentrate limited resources to manage them.
引用
收藏
页数:9
相关论文
共 29 条
[1]   A simple comorbidity scale predicts clinical outcomes and costs in dialysis patients [J].
Beddhu, S ;
Bruns, FJ ;
Saul, M ;
Seddon, P ;
Zeidel, ML .
AMERICAN JOURNAL OF MEDICINE, 2000, 108 (08) :609-613
[2]   Prediction of Mortality in Patients Undergoing Maintenance Hemodialysis by Charlson Comorbidity Index Using ICD-10 Database [J].
Chae, Je-Wook ;
Song, Chang Seok ;
Kim, Hyang ;
Lee, Kyu-Beck ;
Seo, Byeong-Sung ;
Kim, Dong-Il .
NEPHRON CLINICAL PRACTICE, 2011, 117 (04) :C379-C384
[3]   A NEW METHOD OF CLASSIFYING PROGNOSTIC CO-MORBIDITY IN LONGITUDINAL-STUDIES - DEVELOPMENT AND VALIDATION [J].
CHARLSON, ME ;
POMPEI, P ;
ALES, KL ;
MACKENZIE, CR .
JOURNAL OF CHRONIC DISEASES, 1987, 40 (05) :373-383
[4]   Risk Factors of Fatal Outcome in Hospitalized Subjects With Coronavirus Disease 2019 From a Nationwide Analysis in China [J].
Chen, Ruchong ;
Liang, Wenhua ;
Jiang, Mei ;
Guan, Weijie ;
Zhan, Chen ;
Wang, Tao ;
Tang, Chunli ;
Sang, Ling ;
Liu, Jiaxing ;
Ni, Zhengyi ;
Hu, Yu ;
Liu, Lei ;
Shan, Hong ;
Lei, Chunliang ;
Peng, Yixiang ;
Wei, Li ;
Liu, Yong ;
Hu, Yahua ;
Peng, Peng ;
Wang, Jianming ;
Liu, Jiyang ;
Chen, Zhong ;
Li, Gang ;
Zheng, Zhijian ;
Qiu, Shaoqin ;
Luo, Jie ;
Ye, Changjiang ;
Zhu, Shaoyong ;
Liu, Xiaoqing ;
Chang, Linling ;
Ye, Feng ;
Zheng, Jinping ;
Zhang, Nuofu ;
Li, Yimin ;
He, Jianxing ;
Li, Shiyue ;
Zhong, Nanshan .
CHEST, 2020, 158 (01) :97-105
[5]   Hemodialysis with Cohort Isolation to Prevent Secondary Transmission during a COVID-19 Outbreak in Korea [J].
Cho, Jang-Hee ;
Kang, Seok Hui ;
Park, Hayne Cho ;
Kim, Dong Ki ;
Lee, Sang-Ho ;
Do, Jun Young ;
Park, Jong Won ;
Kim, Seong Nam ;
Kim, Myeong Seong ;
Jin, Kyubok ;
Kang, Gun Woo ;
Park, Sun-Hee ;
Kim, Yong-Lim ;
Lee, Young-Ki .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2020, 31 (07) :1398-1408
[6]   Charlson Comorbidity Index Score and Risk of Severe Outcome and Death in Danish COVID-19 Patients [J].
Christensen, Daniel Molager ;
Strange, Jarl Emanuel ;
Gislason, Gunnar ;
Torp-Pedersen, Christian ;
Gerds, Thomas ;
Fosbol, Emil ;
Phelps, Matthew .
JOURNAL OF GENERAL INTERNAL MEDICINE, 2020, 35 (09) :2801-2803
[7]   Usefulness of Charlson Comorbidity Index to Predict Early Mortality and Overall Survival in Older Patients With Acute Myeloid Leukemia [J].
Dhakal, Prajwal ;
Shostrom, Valerie ;
Al-Kadhimi, Zaid S. ;
Maness, Lori J. ;
Gundabolu, Krishna ;
Bhatt, Vijaya Raj .
CLINICAL LYMPHOMA MYELOMA & LEUKEMIA, 2020, 20 (12) :804-+
[8]   Clinical Characteristics of Coronavirus Disease 2019 in China [J].
Guan, W. ;
Ni, Z. ;
Hu, Yu ;
Liang, W. ;
Ou, C. ;
He, J. ;
Liu, L. ;
Shan, H. ;
Lei, C. ;
Hui, D. S. C. ;
Du, B. ;
Li, L. ;
Zeng, G. ;
Yuen, K. -Y. ;
Chen, R. ;
Tang, C. ;
Wang, T. ;
Chen, P. ;
Xiang, J. ;
Li, S. ;
Wang, Jin-lin ;
Liang, Z. ;
Peng, Y. ;
Wei, L. ;
Liu, Y. ;
Hu, Ya-hua ;
Peng, P. ;
Wang, Jian-ming ;
Liu, J. ;
Chen, Z. ;
Li, G. ;
Zheng, Z. ;
Qiu, S. ;
Luo, J. ;
Ye, C. ;
Zhu, S. ;
Zhong, N. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (18) :1708-1720
[9]   Age and Multimorbidity Predict Death Among COVID-19 Patients Results of the SARS-RAS Study of the Italian Society of Hypertension [J].
Iaccarino, Guido ;
Grassi, Guido ;
Borghi, Claudio ;
Ferri, Claudio ;
Salvetti, Massimo ;
Volpe, Massimo .
HYPERTENSION, 2020, 76 (02) :366-372
[10]   Circulating trimethyllysine and risk of acute myocardial infarction in patients with suspected stable coronary heart disease [J].
Imam, Z. ;
Odish, F. ;
Gill, I. ;
O'Connor, D. ;
Armstrong, J. ;
Vanood, A. ;
Ibironke, O. ;
Hanna, A. ;
Ranski, A. ;
Halalau, A. .
JOURNAL OF INTERNAL MEDICINE, 2020, 288 (04) :469-476