Fast clustering algorithm for vector quantisation

被引:4
作者
Baek, S [1 ]
Jeon, B [1 ]
Lee, D [1 ]
Sung, KM [1 ]
机构
[1] Seoul Natl Univ, Sch Elect Engn, Appl Elect Lab, Kwanak Gu, Seoul 151742, South Korea
关键词
D O I
10.1049/el:19980217
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A fast clustering algorithm is presented as an alternative to the K-means algorithm. By encoding training vectors selectively and changing the codebook updating step, the algorithm reduces the computation time. Simulations show that the algorithm outperforms the K-means algorithm in computation time and performance in terms of mean-squared-error.
引用
收藏
页码:151 / 152
页数:2
相关论文
共 6 条
[1]  
Anderberg M.R., 1973, Probability and Mathematical Statistics
[2]  
BAEK SJ, 1997, IEEE SIGNAL PROCESS, V4
[3]  
LEE D, 1997, IEEE SIGNAL PROCESS, V4
[4]   A FAST MEAN-DISTANCE-ORDERED PARTIAL CODEBOOK SEARCH ALGORITHM FOR IMAGE VECTOR QUANTIZATION [J].
RA, SW ;
KIM, JK .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1993, 40 (09) :576-579
[5]   GLOBALLY OPTIMAL VECTOR QUANTIZER DESIGN BY STOCHASTIC RELAXATION [J].
ZEGER, K ;
VAISEY, J ;
GERSHO, A .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1992, 40 (02) :310-322
[6]  
[No title captured]