RIEMANN SURFACES AND AF-ALGEBRAS

被引:1
作者
Nikolaev, Igor [1 ]
机构
[1] Fields Inst Res Math Sci, Toronto, ON, Canada
关键词
Riemann surfaces; AF-algebras; INDUCTIVE LIMITS; TRANSFORMATIONS; DIFFERENTIALS; FOLIATIONS;
D O I
10.1215/20088752-3544893
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a generic set in the Teichmiffler space, we construct a covariant functor with the range in a category of the AF-algebras; the functor maps isomorphic Riemann surfaces to the stably isomorphic AF-algebras. In the special case of genus one, one gets a functor between the category of complex tori and the Effros-Shen algebras.
引用
收藏
页码:371 / 380
页数:10
相关论文
共 15 条
[1]  
[Anonymous], 1984, ERGEBNISSE MATH EMAT
[2]  
BAUER M, 1996, BOL SOC BRAS MAT, V27, P109
[3]  
Bernstein L., 1971, LECT NOTES MATH, V207
[4]  
BRATTELI O, 1972, T AM MATH SOC, V171, P195
[5]   DENSITY OF STREBEL DIFFERENTIALS [J].
DOUADY, A ;
HUBBARD, J .
INVENTIONES MATHEMATICAE, 1975, 30 (02) :175-179
[6]  
Effros E. G., 1981, CBMS REGIONAL C SERI, V46
[7]   APPROXIMATELY FINITE C-STAR-ALGEBRAS AND CONTINUED FRACTIONS [J].
EFFROS, EG ;
SHEN, CL .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1980, 29 (02) :191-204
[8]   CLASSIFICATION OF INDUCTIVE LIMITS OF SEQUENCES OF SEMISIMPLE FINITE-DIMENSIONAL ALGEBRAS [J].
ELLIOTT, GA .
JOURNAL OF ALGEBRA, 1976, 38 (01) :29-44
[9]  
Fathi A., 1979, Asterisque, V66
[10]   QUADRATIC DIFFERENTIALS AND FOLIATIONS [J].
HUBBARD, J ;
MASUR, H .
ACTA MATHEMATICA, 1979, 142 (3-4) :221-274