Hybrid graphene metasurface for near-infrared absorbers

被引:10
作者
Rahman, Md Mahfuzur [1 ,2 ]
Raza, Aikifa [2 ]
Younes, Hammad [2 ]
AlGhaferi, Amal [2 ]
Chiesa, Matteo [2 ,3 ]
Lu, JinYou [2 ]
机构
[1] MIST, Dept Ind & Prod Engn IPE, Dhaka, Bangladesh
[2] Khalifa Univ, Dept Mech & Mat Engn, Lab Energy & Nano Sci, Abu Dhabi, U Arab Emirates
[3] UiT Arctic Univ Norway, Arctic Renewable Energy Ctr Arc, Dept Phys & Technol, Tromso, Norway
来源
OPTICS EXPRESS | 2019年 / 27卷 / 18期
关键词
PERFECT ABSORBER; RAMAN; ABSORPTION; RESONANCE; FILMS;
D O I
10.1364/OE.27.024866
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We experimentally demonstrated an amorphous graphene-based metasurface yielding near-infrared super absorber characteristic. The structure is obtained by alternatively combining magnetron-sputtering deposition and graphene transfer coating fabrication techniques. The thickness constraint of the physical vapor-deposited amorphous metallic layer is unlocked and as a result, the as-fabricated graphene-based metasurface absorber achieves near-perfect absorption in the near-infrared region with an ultra-broad spectral bandwidth of 3.0 mu m. Our experimental characterization and theoretical analysis further point out that the strong light-matter interaction observed is caused by localized surface plasmon resonance of the metal film's particle-like surface morphology. In addition to the enhanced light absorption characteristics, such an amorphous metasurface can be used for surface-enhanced Raman scattering applications. Meanwhile, the proposed graphene-based metasurface relies solely on CMOS-compatible, low cost and large-area processing, which can be flexibly scaled up for mass production. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:24866 / 24876
页数:11
相关论文
共 46 条
  • [1] Large-Area Metasurface Perfect Absorbers from Visible to Near-Infrared
    Akselrod, Gleb M.
    Huang, Jiani
    Hoang, Thang B.
    Bowen, Patrick T.
    Su, Logan
    Smith, David R.
    Mikkelsen, Maiken H.
    [J]. ADVANCED MATERIALS, 2015, 27 (48) : 8028 - 8034
  • [2] A perfect absorber made of a graphene micro-ribbon metamaterial
    Alaee, Rasoul
    Farhat, Mohamed
    Rockstuhl, Carsten
    Lederer, Falk
    [J]. OPTICS EXPRESS, 2012, 20 (27): : 28017 - 28024
  • [3] Honeycomb Carbon: A Review of Graphene
    Allen, Matthew J.
    Tung, Vincent C.
    Kaner, Richard B.
    [J]. CHEMICAL REVIEWS, 2010, 110 (01) : 132 - 145
  • [4] Thermal dewetting tunes surface enhanced resonance Raman scattering (SERRS) performance
    Andrikaki, Sonia
    Govatsi, Katerina
    Yannopoulos, Spyros N.
    Voyiatzis, George A.
    Andrikopoulos, Konstantinos S.
    [J]. RSC ADVANCES, 2018, 8 (51): : 29062 - 29070
  • [5] [Anonymous], 1998, Handbook of Optical Constants of Solids
  • [6] Metasurface Broadband Solar Absorber
    Azad, Abul K.
    Kort-Kamp, Wilton J. M.
    Sykora, Milan
    Weisse-Bernstein, Nina R.
    Luk, Ting S.
    Taylor, Antoinette J.
    Dalvit, Diego A. R.
    Chen, Hou-Tong
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [7] Graphene metascreen for designing compact infrared absorbers with enhanced bandwidth
    Chen, Pai-Yen
    Farhat, Mohamed
    Bagci, Hakan
    [J]. NANOTECHNOLOGY, 2015, 26 (16)
  • [8] Terahertz Metamaterial Devices Based on Graphene Nanostructures
    Chen, Pai-Yen
    Alu, Andrea
    [J]. IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2013, 3 (06) : 748 - 756
  • [9] Direct Measurement of the Magnitude of the van der Waals Interaction of Single and Multilayer Graphene
    Chiou, Yu-Cheng
    Olukan, Tuza Adeyemi
    Almahri, Mariam Ali
    Apostoleris, Harry
    Chiu, Cheng Hsiang
    Lai, Chia-Yun
    Lu, Jin-You
    Santos, Sergio
    Almansouri, Ibraheem
    Chiesa, Matteo
    [J]. LANGMUIR, 2018, 34 (41) : 12335 - 12343
  • [10] Lithography-Free Broadband Ultrathin-Film Absorbers with Gap-Plasmon Resonance for Organic Photovoltaics
    Choi, Minjung
    Kang, Gumin
    Shin, Dongheok
    Barange, Nilesh
    Lee, Chang-Won
    Ko, Doo-Hyun
    Kim, Kyoungsik
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (20) : 12997 - 13008