On the Ramsey number of the triangle and the cube

被引:2
作者
Griffiths, Simon [1 ]
Morris, Robert [1 ]
Pontiveros, Gonzalo Fiz [1 ]
Saxton, David [1 ]
Skokan, Jozef [2 ,3 ]
机构
[1] IMPA, Estr Dona Castorina 110, Rio De Janeiro, RJ, Brazil
[2] London Sch Econ, Dept Math, Houghton St, London WC2A 2AE, England
[3] Univ Illinois, Dept Math, 273 Altgeld Hall,1409 W Green St,MC-382, Urbana, IL 61801 USA
关键词
GOODNESS; GRAPHS;
D O I
10.1007/s00493-015-3089-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Ramsey number r(K (3),Q (n) ) is the smallest integer N such that every red-blue colouring of the edges of the complete graph K (N) contains either a red n-dimensional hypercube, or a blue triangle. Almost thirty years ago, Burr and ErdAs conjectured that r(K (3),Q (n) )=2 (n+1)-1 for every naa"center dot, but the first non-trivial upper bound was obtained only recently, by Conlon, Fox, Lee and Sudakov, who proved that r(K (3),Q (n) )a (c) 1/27000 center dot 2 (n) . Here we show that r(K (3),Q (n) )=(1+o(1))2 (n+1) as n -> a.
引用
收藏
页码:71 / 89
页数:19
相关论文
共 11 条
[1]   Ramsey-goodness-and otherwise [J].
Allen, Peter ;
Brightwell, Graham ;
Skokan, Jozef .
COMBINATORICA, 2013, 33 (02) :125-160
[2]  
ALON N, 1990, J AM MATH SOC, V3, P801
[3]  
BRANDT S., 1996, EXPANDING GRAPHS RAM
[4]   GENERALIZATIONS OF A RAMSEY-THEORETIC RESULT OF CHVATAL [J].
BURR, SA ;
ERDOS, P .
JOURNAL OF GRAPH THEORY, 1983, 7 (01) :39-51
[5]  
BURR SA, 1981, J LOND MATH SOC, V24, P405
[6]  
Chvaatal V., 1977, J GRAPH THEOR, V1, P93
[7]   Ramsey numbers of cubes versus cliques [J].
Conlon, David ;
Fox, Jacob ;
Lee, Choongbum ;
Sudakov, Benny .
COMBINATORICA, 2016, 36 (01) :37-70
[8]   Hypergraph Packing and Sparse Bipartite Ramsey Numbers [J].
Conlon, David .
COMBINATORICS PROBABILITY & COMPUTING, 2009, 18 (06) :913-923
[9]   Density theorems for bipartite graphs and related Ramsey-type results [J].
Fox, Jacob ;
Sudakov, Benny .
COMBINATORICA, 2009, 29 (02) :153-196
[10]   Ramsey goodness and beyond [J].
Nikiforov, Vladimir ;
Rousseau, Cecil C. .
COMBINATORICA, 2009, 29 (02) :227-262