Ultrasound-Induced Wireless Energy Harvesting for Potential Retinal Electrical Stimulation Application

被引:99
作者
Jiang, Laiming [1 ,2 ]
Yang, Yang [3 ,4 ]
Chen, Ruimin [5 ]
Lu, Gengxi [5 ]
Li, Runze [1 ,5 ]
Xing, Jie [2 ]
Shung, K. Kirk [5 ]
Humayun, Mark S. [1 ]
Zhu, Jianguo [2 ]
Chen, Yong [3 ]
Zhou, Qifa [1 ,5 ]
机构
[1] Univ Southern Calif, Keck Sch Med, Roski Eye Inst, Los Angeles, CA 90033 USA
[2] Sichuan Univ, Coll Mat Sci & Engn, Chengdu 610064, Sichuan, Peoples R China
[3] Univ Southern Calif, Viterbi Sch Engn, Dept Aerosp & Mech Engn, Epstein Dept Ind & Syst Engn, Los Angeles, CA 90089 USA
[4] San Diego State Univ, Dept Mech Engn, 5500 Campanile Dr, San Diego, CA 92182 USA
[5] Univ Southern Calif, Viterbi Sch Engn, Dept Biomed Engn, Los Angeles, CA 90089 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
biomedical; flexible device; piezoelectric composite; retinal stimulation; ultrasonic energy transfer; NEURAL STIMULATION; THERAPEUTIC ULTRASOUND; 1-3; COMPOSITES; PIEZOCOMPOSITES; STANDARD; SYSTEM; ARRAY;
D O I
10.1002/adfm.201902522
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Retinal electrical stimulation for people with neurodegenerative diseases has shown to be feasible for direct excitation of neurons as a means of restoring vision. In this work, a new electrical stimulation strategy is proposed using ultrasound-driven wireless energy harvesting technology to convert acoustic energy to electricity through the piezoelectric effect. The design, fabrication, and performance of a millimeter-scale flexible ultrasound patch that utilizes an environment-friendly lead-free piezocomposite are described. A modified dice-and-fill technique is used to manufacture the microstructure of the piezocomposite and to generate improved electrical and acoustic properties. The as-developed device can be attached on a complex surface and be driven by ultrasound to produce adjustable electrical outputs, reaching a maximum output power of 45 mW cm(-2). Potential applications for charging energy storage devices and powering commercial electronics using the device are demonstrated. The considerable current signals (e.g., current >72 mu A and current density >9.2 nA mu m(-2)) that are higher than the average thresholds of retinal stimulation are also obtained in the ex vivo experiment of an implanted environment, showing great potential to be integrated on implanted biomedical devices for electrical stimulation application.
引用
收藏
页数:13
相关论文
共 63 条
[1]   A review of therapeutic ultrasound: Biophysical effects [J].
Baker, KG ;
Robertson, VJ ;
Duck, FA .
PHYSICAL THERAPY, 2001, 81 (07) :1351-1358
[2]   Implantable Devices: Issues and Challenges [J].
Bazaka, Kateryna ;
Jacob, Mohan V. .
ELECTRONICS, 2013, 2 (01) :1-34
[3]   A 4.78 mm2 Fully-Integrated Neuromodulation SoC Combining 64 Acquisition Channels With Digital Compression and Simultaneous Dual Stimulation [J].
Biederman, William ;
Yeager, Daniel J. ;
Narevsky, Nathan ;
Leverett, Jaclyn ;
Neely, Ryan ;
Carmena, Jose M. ;
Alon, Elad ;
Rabaey, Jan M. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2015, 50 (04) :1038-1047
[4]   SIMPLE-MODEL FOR PIEZOELECTRIC CERAMIC POLYMER 1-3 COMPOSITES USED IN ULTRASONIC TRANSDUCER APPLICATIONS [J].
CHAN, HLW ;
UNSWORTH, J .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1989, 36 (04) :434-441
[5]   A mm-Sized Implantable Medical Device (IMD) With Ultrasonic Power Transfer and a Hybrid Bi-Directional Data Link [J].
Charthad, Jayant ;
Weber, Marcus J. ;
Chang, Ting Chia ;
Arbabian, Amin .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2015, 50 (08) :1741-1753
[6]   Potassium sodium niobate (KNN)-based lead-free piezoelectric ceramic coatings on steel structure by thermal spray method [J].
Chen, Shuting ;
Tan, Chee Kiang Ivan ;
Tan, Sze Yu ;
Guo, Shifeng ;
Zhang, Lei ;
Yao, Kui .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2018, 101 (12) :5524-5533
[7]   Eye damage due to cosmetic ultrasound treatment: a case report [J].
Chen, Yuanyuan ;
Shi, Zhongyu ;
Shen, Yin .
BMC OPHTHALMOLOGY, 2018, 18
[8]  
CHEUNG AY, 1984, CANCER RES, V44, P4736
[9]   A brief review of sound energy harvesting [J].
Choi, Jaehoon ;
Jung, Inki ;
Kang, Chong-Yun .
NANO ENERGY, 2019, 56 :169-183
[10]  
Christensen D., 1988, Ultrasonic Bioinstrumentation