Photoelectric and magnetic properties of Fe-hyperdoped Si layers formed by the recoil-atom implantation

被引:7
作者
Batalov, Rafael [1 ]
Bayazitov, Rustem [1 ]
Faizrakhmanov, Ildar [1 ]
Khaibullin, Rustam [1 ]
Tagirov, Lenar [1 ,2 ]
Gumarov, Amir [2 ]
Vdovin, Vladimir [3 ]
机构
[1] RAS, FRC Kazan Sci Ctr, Zavoisky Phys Tech Inst, Kazan, Russia
[2] Kazan Fed Univ, Kazan, Russia
[3] Russian Acad Sci, Siberian Branch, Rzhanov Inst Semicond Phys, Novosibirsk, Russia
关键词
Silicon; Iron; Hyperdoping; Ion beam; Ion sputtering; Nanoparticles; Ferromagnetism; Photoresponse; SILICON; IRON; ION;
D O I
10.1016/j.mssp.2019.104752
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The doping of near-surface region of single crystalline p-type Si by Fe impurity under irradiation by the low-energy and high-current Xe+ ion beam is investigated. The recoil-atom implantation method was applied which utilizes simultaneous sputtering of Fe target with irradiation of the deposited Fe atoms on the Si substrate surface by Xe+ ion beam. The resulting incorporation of Fe atoms into Si leads to formation of very thin (similar to 5 nm) highly doped (>10(22) at/cm(3)) surface layer (Si:Fe) containing Si and alpha-Fe nanoparticles with sizes of 5-20 nm. Such a layer demonstrates ferromagnetism at T = 10 K and superparamagnetism at 300 K. Inversion of the conductivity type (from p-to n-type) in the heavily doped Si:Fe layer and formation of n-p junction to the substrate is observed. A photoresponse of thus obtained n-Si:Fe/p-Si diode structure demonstrates an intense signal in the wavelength range of 500-1200 nm with a maximum at about 950 nm under the low reverse bias voltage (U =1 V), whose integral intensity is comparable with that for commercial silicon photodiode at U = 10 V.
引用
收藏
页数:6
相关论文
共 30 条
[1]  
[Anonymous], LASER ELECT BEAM PRO
[2]  
[Anonymous], SOV PHYS SOLID STATE
[3]  
[Anonymous], 2000, Nist x-ray photoelectron spectroscopy (xps) database, version 3.5
[4]  
[Anonymous], PHYS CHEM FUNDAMENTA
[5]   Iron distribution in the implanted silicon under the action of high-power pulsed ion and laser beams [J].
Bayazitov, R ;
Batalov, R ;
Nurutdinov, R ;
Shustov, V ;
Gaiduk, P ;
Dézsi, I ;
Kótai, E .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2005, 240 (1-2) :224-228
[6]  
Bean C.P., 1959, J APPL PHYS, V30, pS120, DOI [DOI 10.1063/1.1735100, 10.1063/1.2185850]
[7]   CMOS-Compatible Controlled Hyperdoping of Silicon Nanowires [J].
Berencen, Yonder ;
Prucnal, Slawomir ;
Moeller, Wolfhard ;
Huebner, Rene ;
Rebohle, Lars ;
Boettger, Roman ;
Glaser, Markus ;
Schoenherr, Tommy ;
Yuan, Ye ;
Wang, Mao ;
Georgiev, Yordan M. ;
Erbe, Artur ;
Lugstein, Alois ;
Helm, Manfred ;
Zhou, Shengqiang ;
Skorupa, Wolfgang .
ADVANCED MATERIALS INTERFACES, 2018, 5 (11)
[8]   Room-temperature optoelectronic response of Ni supersaturated p-type Si processed by continuous-wave laser irradiation [J].
Chen, Rong ;
Fan, Baodian ;
Pan, Miao ;
Cheng, Qijin ;
Chen, Chao .
MATERIALS LETTERS, 2016, 163 :90-93
[9]   LASER ANNEALING STUDIES ON ION-IMPLANTED IRON IN SILICON [J].
DAMGAARD, S ;
ORON, M ;
PETERSEN, JW ;
PETRIKIN, YV ;
WEYER, G .
PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1980, 59 (01) :63-67
[10]  
Elfresh M., 1994, Fundamentals of Magnetism and Magnetic Measurements