Conserved sequence-specific lincRNA-steroid receptor interactions drive transcriptional repression and direct cell fate

被引:98
作者
Hudson, William H. [1 ,2 ]
Pickard, Mark R. [3 ]
de Vera, Ian Mitchelle S. [4 ]
Kuiper, Emily G. [1 ]
Mourtada-Maarabouni, Mirna [3 ]
Conn, Graeme L. [1 ]
Kojetin, Douglas J. [4 ]
Williams, Gwyn T. [3 ]
Ortlund, Eric A. [1 ,2 ]
机构
[1] Emory Univ, Dept Biochem, Sch Med, Atlanta, GA 30322 USA
[2] Winship Canc Inst, Atlanta, GA 30322 USA
[3] Keele Univ, Inst Sci & Technol Med, Sch Life Sci, Keele ST5 5BG, Staffs, England
[4] Scripps Res Inst, Dept Mol Therapeut, Jupiter, FL 33458 USA
基金
美国国家卫生研究院;
关键词
LONG NONCODING RNA; GLUCOCORTICOID-RECEPTOR; MOLECULAR-DYNAMICS; GROWTH-ARREST; GROOVE RECOGNITION; CRYSTAL-STRUCTURE; BINDING DOMAIN; DNA; APOPTOSIS; GAS5;
D O I
10.1038/ncomms6395
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The majority of the eukaryotic genome is transcribed, generating a significant number of long intergenic noncoding RNAs (lincRNAs). Although lincRNAs represent the most poorly understood product of transcription, recent work has shown lincRNAs fulfill important cellular functions. In addition to low sequence conservation, poor understanding of structural mechanisms driving lincRNA biology hinders systematic prediction of their function. Here we report the molecular requirements for the recognition of steroid receptors (SRs) by the lincRNA growth arrest-specific 5 (Gas5), which regulates steroid-mediated transcriptional regulation, growth arrest and apoptosis. We identify the functional Gas5-SR interface and generate point mutations that ablate the SR-Gas5 lincRNA interaction, altering Gas5-driven apoptosis in cancer cell lines. Further, we find that the Gas5 SR-recognition sequence is conserved among haplorhines, with its evolutionary origin as a splice acceptor site. This study demonstrates that lincRNAs can recognize protein targets in a conserved, sequence-specific manner in order to affect critical cell functions.
引用
收藏
页数:13
相关论文
共 70 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]   THE GLUCOCORTICOID RECEPTOR PROTEIN BINDS TO TRANSFER-RNA [J].
ALI, M ;
VEDECKIS, WV .
SCIENCE, 1987, 235 (4787) :467-470
[3]  
Allen M. P., 1987, COMPUTER SIMULATION
[4]   alpha helix-RNA major groove recognition in an HIV-1 Rev peptide RRE RNA complex [J].
Battiste, JL ;
Mao, HY ;
Rao, NS ;
Tan, RY ;
Muhandiram, DR ;
Kay, LE ;
Frankel, AD ;
Williamson, JR .
SCIENCE, 1996, 273 (5281) :1547-1551
[5]   Alu repeats and human genomic diversity [J].
Batzer, MA ;
Deininger, PL .
NATURE REVIEWS GENETICS, 2002, 3 (05) :370-379
[6]   The Amber biomolecular simulation programs [J].
Case, DA ;
Cheatham, TE ;
Darden, T ;
Gohlke, H ;
Luo, R ;
Merz, KM ;
Onufriev, A ;
Simmerling, C ;
Wang, B ;
Woods, RJ .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) :1668-1688
[7]  
COTE GJ, 1986, J BIOL CHEM, V261, P5524
[8]   The HADDOCK web server for data-driven biomolecular docking [J].
De Vries, Sjoerd J. ;
van Dijk, Marc ;
Bonvin, Alexandre M. J. J. .
NATURE PROTOCOLS, 2010, 5 (05) :883-897
[9]   Rapid, nondenaturing RNA purification using weak anion-exchange fast performance liquid chromatography [J].
Easton, Laura E. ;
Shibata, Yoko ;
Lukavsky, Peter J. .
RNA, 2010, 16 (03) :647-653
[10]   Coot:: model-building tools for molecular graphics [J].
Emsley, P ;
Cowtan, K .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2126-2132