Counting gauge invariants: the plethystic program

被引:196
作者
Feng, Bo [1 ]
Hanany, Amihay
He, Yang-Hui
机构
[1] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
[2] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England
[3] Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2AZ, England
[4] Perimeter Inst, Waterloo, ON N2L 2Y5, Canada
[5] Coll Mertonensis Acad Oxoniensis, Oxford OX1 4JD, England
[6] Univ Oxford, Inst Math, Oxford OX1 3LB, England
关键词
differential and algebraic geometry; D-branes; brane dynamics in gauge theories; AdS-CFT correspondence;
D O I
10.1088/1126-6708/2007/03/090
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We propose a programme for systematically counting the single and multitrace gauge invariant operators of a gauge theory. Key to this is the plethystic function. We expound in detail the power of this plethystic programme for world-volume quiver gauge theories of D-branes probing Calabi-Yau singularities, an illustrative case to which the programme is not limited, though in which a full intimate web of relations between the geometry and the gauge theory manifests herself. We can also use generalisations of Hardy-Ramanujan to compute the entropy of gauge theories from the plethystic exponential. In due course, we also touch upon fascinating connections to Young Tableaux, Hilbert schemes and the MacMahon Conjecture.
引用
收藏
页数:42
相关论文
共 60 条
[1]   INFINITE PRODUCTS, PARTITION-FUNCTIONS, AND THE MEINARDUS THEOREM [J].
ACTOR, AA .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (11) :5749-5764
[2]  
Auluck F. C., 1942, J INDIAN MATH SOC, V6, P105
[3]  
BASU A, HEPTH0608093
[4]  
Benvenuti S, 2005, J HIGH ENERGY PHYS
[5]   An infinite family of superconformal quiver gauge theories with Sasaki-Einstein duals [J].
Benvenuti, S ;
Franco, S ;
Hanany, A ;
Martelli, D ;
Sparks, J .
JOURNAL OF HIGH ENERGY PHYSICS, 2005, (06) :1451-1475
[6]  
Benvenuti S, 2005, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2005/07/021
[7]  
BENVENUTI S, HEPTH0608050
[8]   Marginal and relevant deformations of N=4 field theories and non-commutative moduli spaces of vacua [J].
Berenstein, D ;
Jejjala, V ;
Leigh, RG .
NUCLEAR PHYSICS B, 2000, 589 (1-2) :196-248
[9]  
BUTTI A, HEPTH0611229
[10]   Deformations of conformal theories and non-toric quiver gauge theories [J].
Butti, Agostino ;
Zaffaroni, Alberto ;
Forcella, Davide .
JOURNAL OF HIGH ENERGY PHYSICS, 2007, (02)