Fraud Detection System for High and Low Voltage Electricity Consumers Based on Data Mining

被引:0
作者
Cabral, Jose E. [1 ]
Pinto, Joao O. P. [1 ]
Pinto, Alexandra M. A. C. [2 ]
机构
[1] Univ Fed Mato Grosso do Sul, Dept Elect Engn, BR-79070900 Campo Grande, MS, Brazil
[2] Hlth Agcy Mato Grosso Sul State, Campo Grande, MS, Brazil
来源
2009 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, VOLS 1-8 | 2009年
关键词
Fraud Detection; Artificial Intelligence; KDD; Rough Sets; Data Mining; Self-Organizing Maps; KNOWLEDGE DISCOVERY;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This work presents two computational system for fraud detection for both high and low voltage electrical energy consumers based on data mining. This two kinds of consumers demanded different approaches and methodologies. The first is based on SOM (Self-Organizing Maps), which allows the identification of the consumption profile historically registered for a consumer, and its comparison with present behavior. The second is based an a hybrid of data mining techniques. From the consumer behavior pre-analysis, electrical energy companies will better direct its inspections and will reach higher rates of correctness. The validation and results showed that the two systems are efficient on the cases of lower consumption resulted by fraud.
引用
收藏
页码:2283 / +
页数:3
相关论文
共 10 条
  • [1] [Anonymous], MATLAB LANGUAGE TECH
  • [2] CABRAL JE, 2008, TRANSM DISTR C EXP T
  • [3] Methodology for fraud detection using Rough Sets
    Cabral, Jose E.
    Pinto, Joao O. P.
    Linares, Kathya S. C.
    Pinto, Alexandra M. A. C.
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, 2006, : 244 - +
  • [4] Fayyad U, 1996, AI MAG, V17, P37
  • [5] Kohonen T., 1995, Series in Information Sciences, V30
  • [6] KOU Y, 2004, P 2004 IEEE INT C NE, V1, P749
  • [7] Pawlak Z., 1991, Rough Sets: Theoretical Aspects of Reasoning About Data, V9, DOI [10.1007/978-94-011-3534-4, DOI 10.1007/978-94-011-3534-4]
  • [8] PIATETSKYSHAPIRO G, 1991, AI MAG, V11, P68
  • [9] Quinlan J. R., 1986, Machine Learning, V1, P81, DOI 10.1007/BF00116251
  • [10] Reis J, 2004, IEEE SYS MAN CYBERN, P3730