Intrinsically disordered proteins in crowded milieu: when chaos prevails within the cellular gumbo

被引:71
作者
Fonin, Alexander V. [1 ]
Darling, April L. [2 ,3 ]
Kuznetsova, Irina M. [1 ]
Turoverov, Konstantin K. [1 ,4 ]
Uversky, Vladimir N. [2 ,3 ]
机构
[1] Russian Acad Sci, Inst Cytol, Lab Struct Dynam Stabil & Folding Prot, St Petersburg, Russia
[2] Univ S Florida, Morsani Coll Med, Dept Mol Med, Tampa, FL USA
[3] Univ S Florida, Morsani Coll Med, USF Hlth Byrd Alzheimers Res Inst, Tampa, FL USA
[4] St Petersburg State Polytech Univ, St Petersburg, Russia
关键词
Intrinsically disordered protein; Intrinsically disordered protein region; Macromolecular crowding; Proteinaceous membrane-less organelles; Conformational stability; Induced folding; C-TERMINAL DOMAIN; NATIVELY UNFOLDED PROTEINS; MEMBRANE-LESS ORGANELLES; ANGLE NEUTRON-SCATTERING; RIBONUCLEASE-P-PROTEIN; X-RAY-SCATTERING; SINGLE-MOLECULE SPECTROSCOPY; ANTI-SIGMA FACTOR; PHASE-SEPARATION; ALPHA-SYNUCLEIN;
D O I
10.1007/s00018-018-2894-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Effects of macromolecular crowding on structural and functional properties of ordered proteins, their folding, interactability, and aggregation are well documented. Much less is known about how macromolecular crowding might affect structural and functional behaviour of intrinsically disordered proteins (IDPs) or intrinsically disordered protein regions (IDPRs). To fill this gap, this review represents a systematic analysis of the available literature data on the behaviour of IDPs/IDPRs in crowded environment. Although it was hypothesized that, due to the excluded-volume effects present in crowded environments, IDPs/IDPRs would invariantly fold in the presence of high concentrations of crowding agents or in the crowded cellular environment, accumulated data indicate that, based on their response to the presence of crowders, IDPs/IDPRs can be grouped into three major categories, foldable, non-foldable, and unfoldable. This is because natural cellular environment is not simply characterized by the presence of high concentration of inert macromolecules, but represents an active milieu, components of which are engaged in direct physical interactions and soft interactions with target proteins. Some of these interactions with cellular components can cause (local) unfolding of query proteins. In other words, since crowding can cause both folding and unfolding of an IDP or its regions, the outputs of the placing of a query protein to the crowded environment would depend on the balance between these two processes. As a result, and because of the spatio-temporal heterogeneity in structural organization of IDPs, macromolecular crowding can differently affect structures of different IDPs. Recent studies indicate that some IDPs are able to undergo liquid-liquid-phase transitions leading to the formation of various proteinaceous membrane-less organelles (PMLOs). Although interiors of such PMLOs are self-crowded, being characterized by locally increased concentrations of phase-separating IDPs, these IDPs are minimally foldable or even non-foldable at all (at least within the physiologically safe time-frame of normal PMLO existence).
引用
收藏
页码:3907 / 3929
页数:23
相关论文
共 254 条
[1]   Folding of an Unfolded Protein by Macromolecular Crowding in Vitro [J].
Aden, Jorgen ;
Wittung-Stafshede, Pernilla .
BIOCHEMISTRY, 2014, 53 (14) :2271-2277
[2]   Myelin Membrane Assembly Is Driven by a Phase Transition of Myelin Basic Proteins Into a Cohesive Protein Meshwork [J].
Aggarwal, Shweta ;
Snaidero, Nicolas ;
Paehler, Gesa ;
Frey, Steffen ;
Sanchez, Paula ;
Zweckstetter, Markus ;
Janshoff, Andreas ;
Schneider, Anja ;
Weil, Marie-Theres ;
Schaap, Iwan A. T. ;
Goerlich, Dirk ;
Simons, Mikael .
PLOS BIOLOGY, 2013, 11 (06)
[3]   Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau [J].
Ambadipudi, Susmitha ;
Biernat, Jacek ;
Riedel, Dietmar ;
Mandelkow, Eckhard ;
Zweckstetter, Markus .
NATURE COMMUNICATIONS, 2017, 8
[4]   Macromolecular and Small Molecular Crowding Have Similar Effects on α-Synuclein Structure [J].
Bai, Jia ;
Liu, Maili ;
Pielak, Gary J. ;
Li, Conggang .
CHEMPHYSCHEM, 2017, 18 (01) :55-58
[5]   Intrinsically Disordered Protein Exhibits Both Compaction and Expansion under Macromolecular Crowding [J].
Banks, Anthony ;
Qin, Sanbo ;
Weiss, Kevin L. ;
Stanley, Christopher B. ;
Zhou, Huan-Xiang .
BIOPHYSICAL JOURNAL, 2018, 114 (05) :1067-1079
[6]   Conditional disorder in chaperone action [J].
Bardwell, James C. A. ;
Jakob, Ursula .
TRENDS IN BIOCHEMICAL SCIENCES, 2012, 37 (12) :517-525
[7]   Mapping the interaction between GRASP65 and GM130, components of a protein complex involved in the stacking of Golgi cisternae [J].
Barr, FA ;
Nakamura, N ;
Warren, G .
EMBO JOURNAL, 1998, 17 (12) :3258-3268
[8]   GRASP65, a protein involved in the stacking of Golgi cisternae [J].
Barr, FA ;
Puype, M ;
Vandekerckhove, J ;
Warren, G .
CELL, 1997, 91 (02) :253-262
[9]   Effect of Macromolecular Crowding on Protein Binding Stability: Modest Stabilization and Significant Biological Consequences [J].
Batra, Jyotica ;
Xu, Ke ;
Qin, Sanbo ;
Zhou, Huan-Xiang .
BIOPHYSICAL JOURNAL, 2009, 97 (03) :906-911
[10]   The enigmatic LEA proteins and other hydrophilins [J].
Battaglia, Marina ;
Olvera-Carrillo, Yadira ;
Garciarrubio, Alejandro ;
Campos, Francisco ;
Covarrubias, Alejandra A. .
PLANT PHYSIOLOGY, 2008, 148 (01) :6-24