A cubic system with twelve small amplitude limit cycles

被引:38
作者
Liu, YR
Huang, WT [1 ]
机构
[1] Guilin Univ Elect Technol, Dept Comp Sci & Math, Guilin 541004, Guangxi, Peoples R China
[2] Cent S Univ, Coll Math Sci & Comp Technol, Changsha 410083, Peoples R China
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2005年 / 129卷 / 02期
基金
中国国家自然科学基金;
关键词
limit cycle; focal value; singular point value; Poincard succession function;
D O I
10.1016/j.bulsci.2004.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the bifurcation of limit cycles for a cubic polynomial system is investigated. By the computation of the singular point values, we prove that the system has 12 small amplitude limit cycles. The process of the proof is algebraic and symbolic. (C) 2004 Elsevier SAS. All rights reserved.
引用
收藏
页码:83 / 98
页数:16
相关论文
共 50 条
  • [1] Seven large-amplitude limit cycles in a cubic polynomial system
    Liu, YR
    Huang, WT
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (02): : 473 - 485
  • [2] Twelve limit cycles in a cubic order planar system with Z2-symmetry
    Yu, P
    Han, M
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2004, 3 (03) : 515 - 526
  • [3] Small Amplitude Limit Cycles and Local Bifurcation of Critical Periods for a Quartic Kolmogorov System
    Dongping He
    Wentao Huang
    Qinlong Wang
    Qualitative Theory of Dynamical Systems, 2020, 19
  • [4] Twelve limit cycles around a singular point in a planar cubic-degree polynomial system
    Yu, Pei
    Tian, Yun
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (08) : 2690 - 2705
  • [5] Small Amplitude Limit Cycles and Local Bifurcation of Critical Periods for a Quartic Kolmogorov System
    He, Dongping
    Huang, Wentao
    Wang, Qinlong
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2020, 19 (02)
  • [6] Limit Cycles of A Cubic Kolmogorov System
    Li, Feng
    PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 619 - 622
  • [7] On a cubic system with eight limit cycles
    Ning, Shucheng
    Xia, Bican
    Zheng, Zhiming
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2007, 14 (04) : 595 - 605
  • [8] Bifurcations of limit cycles in a cubic system with cubic perturbations
    Zang, Hong
    Zhang, Tonghua
    Han, Maoan
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 176 (01) : 341 - 358
  • [9] Twelve limit cycles in a cubic case of the 16th Hilbert problem
    Yu, P
    Han, M
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (07): : 2191 - 2205
  • [10] Center problem and the bifurcation of limit cycles for a cubic polynomial system
    Du, Chaoxiong
    Huang, Wentao
    Zhang, Qi
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (17) : 5200 - 5215