A cubic system with twelve small amplitude limit cycles

被引:38
作者
Liu, YR
Huang, WT [1 ]
机构
[1] Guilin Univ Elect Technol, Dept Comp Sci & Math, Guilin 541004, Guangxi, Peoples R China
[2] Cent S Univ, Coll Math Sci & Comp Technol, Changsha 410083, Peoples R China
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2005年 / 129卷 / 02期
基金
中国国家自然科学基金; 英国科研创新办公室;
关键词
limit cycle; focal value; singular point value; Poincard succession function;
D O I
10.1016/j.bulsci.2004.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the bifurcation of limit cycles for a cubic polynomial system is investigated. By the computation of the singular point values, we prove that the system has 12 small amplitude limit cycles. The process of the proof is algebraic and symbolic. (C) 2004 Elsevier SAS. All rights reserved.
引用
收藏
页码:83 / 98
页数:16
相关论文
共 9 条
[1]  
Li J., 1991, PUBL MAT, V35, P487
[2]   Hilbert's 16th problem and bifurcations of planar polynomial vector fields [J].
Li, JB .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (01) :47-106
[3]  
[刘一戎 Liu Yirong], 2002, [应用数学学报, Acta Mathematicae Applicatae Sinica], V25, P295
[4]  
LIU YR, 1990, SCI CHINA SER A, V33, P10
[5]   Measurement of pinion type cutter using coordinate measuring machine [J].
Liu, ZX ;
Tamura, H ;
Kawasaki, K ;
Mitome, K .
JSME INTERNATIONAL JOURNAL SERIES C-MECHANICAL SYSTEMS MACHINE ELEMENTS AND MANUFACTURING, 2001, 44 (01) :37-43
[6]  
SHI S, 1980, SCI SINICA, V23, P16
[7]  
YU P, IN PRESS 12 LIMIT CY
[8]   Bifurcations of limit cycles in a cubic system [J].
Zhang, TH ;
Zang, H ;
Han, MA .
CHAOS SOLITONS & FRACTALS, 2004, 20 (03) :629-638
[9]  
ZOLSDEK H, 1995, NONLINEARITY, V8, P843