Dyson's ranks and Maass forms

被引:113
作者
Bringmann, Kathrin [1 ]
Ono, Ken [2 ]
机构
[1] Univ Cologne, Math Inst, D-50931 Cologne, Germany
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
MOCK THETA-FUNCTIONS; PARTITION-FUNCTION; MODULAR-FORMS; CONGRUENCES; CURVES; CRANK;
D O I
10.4007/annals.2010.171.419
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by work of Ramanujan, Freeman Dyson defined the rank of an integer partition to be its largest part minus its number of parts. If N(m, n) denotes the number of partitions of n with rank m, then it turns out that R(w; q) : = 1 + Sigma(infinity)(n=1) Sigma(infinity)(m=-infinity) N(m, n)w(m)q(n) = 1 + Sigma(infinity)(n=1) q(n2)/Pi(n)(j=1)(1-(w+w(-1))q(j) + q(2j)). We show that if zeta not equal 1 is a root of unity, then R(zeta; q) is essentially the holomorphic part of a weight 1/2 weak Maass form on a subgroup of SL2(Z). For integers 0 <= r < t, we use this result to determine the modularity of the generating function for N(r, t; n), the number of partitions of n whose rank is congruent to r (mod t). We extend the modularity above to construct an infinite family of vector valued weight 1/2 forms for the full modular group SL2(Z), a result which is of independent interest.
引用
收藏
页码:419 / 449
页数:31
相关论文
共 50 条
  • [31] On a completed generating function of locally harmonic Maass forms
    Bringmann, Kathrin
    Kane, Ben
    Zwegers, Sander
    COMPOSITIO MATHEMATICA, 2014, 150 (05) : 749 - 762
  • [32] A generalized Kohnen-Zagier formula for Maass forms
    Baruch, Ehud Moshe
    Mao, Zhengyu
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 82 : 1 - 16
  • [33] Locally harmonic Maass forms of positive even weight
    Mono, Andreas
    ISRAEL JOURNAL OF MATHEMATICS, 2024, 261 (02) : 671 - 694
  • [34] Shifted polyharmonic Maass forms for PSL(2, Z)
    Andersen, Nickolas
    Lagarias, Jeffrey C.
    Rhoades, Robert C.
    ACTA ARITHMETICA, 2018, 185 (01) : 39 - 79
  • [35] Overpartition rank differences modulo 7 by Maass forms
    Jennings-Shaffer, C.
    JOURNAL OF NUMBER THEORY, 2016, 163 : 331 - 358
  • [36] Harmonic Maass forms associated to real quadratic fields
    Charollois, Pierre
    Li, Yingkun
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2020, 22 (04) : 1115 - 1148
  • [37] Converse theorems for automorphic distributions and Maass forms of level N
    Miyazaki, Tadashi
    Sato, Fumihiro
    Sugiyama, Kazunari
    Ueno, Takahiko
    RESEARCH IN NUMBER THEORY, 2019, 6 (02)
  • [38] Traces of CM values and cycle integrals of polyharmonic Maass forms
    Matsusaka, Toshiki
    RESEARCH IN NUMBER THEORY, 2019, 5 (01)
  • [39] Almost harmonic Maass forms and Kac-Wakimoto characters
    Bringmann, Kathrin
    Folsom, Amanda
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 694 : 179 - 202
  • [40] ARITHMETIC PROPERTIES OF NON-HARMONIC WEAK MAASS FORMS
    Bringmann, Kathrin
    Penniston, David
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (03) : 825 - 833