Dyson's ranks and Maass forms

被引:113
作者
Bringmann, Kathrin [1 ]
Ono, Ken [2 ]
机构
[1] Univ Cologne, Math Inst, D-50931 Cologne, Germany
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
MOCK THETA-FUNCTIONS; PARTITION-FUNCTION; MODULAR-FORMS; CONGRUENCES; CURVES; CRANK;
D O I
10.4007/annals.2010.171.419
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by work of Ramanujan, Freeman Dyson defined the rank of an integer partition to be its largest part minus its number of parts. If N(m, n) denotes the number of partitions of n with rank m, then it turns out that R(w; q) : = 1 + Sigma(infinity)(n=1) Sigma(infinity)(m=-infinity) N(m, n)w(m)q(n) = 1 + Sigma(infinity)(n=1) q(n2)/Pi(n)(j=1)(1-(w+w(-1))q(j) + q(2j)). We show that if zeta not equal 1 is a root of unity, then R(zeta; q) is essentially the holomorphic part of a weight 1/2 weak Maass form on a subgroup of SL2(Z). For integers 0 <= r < t, we use this result to determine the modularity of the generating function for N(r, t; n), the number of partitions of n whose rank is congruent to r (mod t). We extend the modularity above to construct an infinite family of vector valued weight 1/2 forms for the full modular group SL2(Z), a result which is of independent interest.
引用
收藏
页码:419 / 449
页数:31
相关论文
共 50 条
  • [1] CONGRUENCES FOR DYSON'S RANKS
    Bringmann, Kathrin
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2009, 5 (04) : 573 - 584
  • [2] Dyson's ranks and Appell-Lerch sums
    Hickerson, Dean
    Mortenson, Eric
    MATHEMATISCHE ANNALEN, 2017, 367 (1-2) : 373 - 395
  • [3] Jacobi Maass forms
    Pitale, Ameya
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2009, 79 (01): : 87 - 111
  • [4] A classification of harmonic Maass forms
    Bringmann, Kathrin
    Kudla, Stephen
    MATHEMATISCHE ANNALEN, 2018, 370 (3-4) : 1729 - 1758
  • [5] Harmonic Maass forms and periods
    Bruinier, Jan Hendrik
    MATHEMATISCHE ANNALEN, 2013, 357 (04) : 1363 - 1387
  • [6] Algebraicity of harmonic Maass forms
    Ono, Ken
    RAMANUJAN JOURNAL, 2009, 20 (03) : 297 - 309
  • [7] Higher-order Maass forms
    Bruggeman, Roelof
    Diamantis, Nikolaos
    ALGEBRA & NUMBER THEORY, 2012, 6 (07) : 1409 - 1458
  • [8] Computation of Harmonic Weak Maass Forms
    Bruinier, Jan H.
    Stroemberg, Fredrik
    EXPERIMENTAL MATHEMATICS, 2012, 21 (02) : 117 - 131
  • [9] Shimura lifting on weak Maass forms
    Choie, Youngju
    Lim, Subong
    ACTA ARITHMETICA, 2016, 173 (01) : 1 - 18
  • [10] Polar harmonic Maass forms and their applications
    Bringmann, Kathrin
    Kane, Ben
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2016, 86 (02): : 213 - 233