Dyson's ranks and Maass forms

被引:116
作者
Bringmann, Kathrin [1 ]
Ono, Ken [2 ]
机构
[1] Univ Cologne, Math Inst, D-50931 Cologne, Germany
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
MOCK THETA-FUNCTIONS; PARTITION-FUNCTION; MODULAR-FORMS; CONGRUENCES; CURVES; CRANK;
D O I
10.4007/annals.2010.171.419
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by work of Ramanujan, Freeman Dyson defined the rank of an integer partition to be its largest part minus its number of parts. If N(m, n) denotes the number of partitions of n with rank m, then it turns out that R(w; q) : = 1 + Sigma(infinity)(n=1) Sigma(infinity)(m=-infinity) N(m, n)w(m)q(n) = 1 + Sigma(infinity)(n=1) q(n2)/Pi(n)(j=1)(1-(w+w(-1))q(j) + q(2j)). We show that if zeta not equal 1 is a root of unity, then R(zeta; q) is essentially the holomorphic part of a weight 1/2 weak Maass form on a subgroup of SL2(Z). For integers 0 <= r < t, we use this result to determine the modularity of the generating function for N(r, t; n), the number of partitions of n whose rank is congruent to r (mod t). We extend the modularity above to construct an infinite family of vector valued weight 1/2 forms for the full modular group SL2(Z), a result which is of independent interest.
引用
收藏
页码:419 / 449
页数:31
相关论文
共 35 条
[1]   Arithmetic of singular moduli and class polynomials [J].
Ahlgren, S ;
Ono, K .
COMPOSITIO MATHEMATICA, 2005, 141 (02) :293-312
[2]   Congruence properties for the partition function [J].
Ahlgren, S ;
Ono, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (23) :12882-12884
[3]   Distribution of the partition function module composite integers M [J].
Ahlgren, S .
MATHEMATISCHE ANNALEN, 2000, 318 (04) :795-803
[4]  
Andrews G.E., 1989, Theta functions-Bowdoin 1987, V49, P283
[5]   Partitions with short sequences and mock theta functions [J].
Andrews, GE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (13) :4666-4671
[6]   ON THEOREMS OF WATSON AND DRAGONETTE FOR RAMANUJANS MOCK THETA FUNCTIONS [J].
ANDREWS, GE .
AMERICAN JOURNAL OF MATHEMATICS, 1966, 88 (02) :454-&
[7]   DYSONS CRANK OF A PARTITION [J].
ANDREWS, GE ;
GARVAN, FG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 18 (02) :167-171
[8]   PARTITIONS AND INDEFINITE QUADRATIC-FORMS [J].
ANDREWS, GE ;
DYSON, FJ ;
HICKERSON, D .
INVENTIONES MATHEMATICAE, 1988, 91 (03) :391-407
[9]  
[Anonymous], 1988, LOST NOTEBOOK OTHER
[10]  
Atkin A.O.L., 1954, Proc. London Math. Soc. 3, V4, P84, DOI DOI 10.1112/PLMS/S3-4.1.84